共查询到18条相似文献,搜索用时 62 毫秒
1.
为更好获取人脸局部表情特征,提出了一种融合局部二值模式(Local Binary Pattern,LBP)和局部稀疏表示的人脸表情特征与识别方法。为深入分析表情对人脸子区域的影响,根据五官特征对人脸进行非均匀分区,并提取局部LBP特征;为精细刻画人脸局部纹理,整合人脸局部特征,设计了人脸局部稀疏重构表示方法,并根据表情对各局部子区域的影响因子,加权融合局部重构残差进行人脸表情识别。在JAFFE2表情人脸库上的对比实验,验证了该方法的可行性和鲁棒性。 相似文献
2.
为挖掘不同人脸表情图像的统计特性差异,提出一种基于分类稀疏表示的表情识别算法。首先通过对不同类别表情图像的字典学习,构建满足各类表情图像统计特性的基函数子集,进而采用Lasso算法获得表情图像在由基函数集所张成特征子空间中的稀疏表示,最后通过比较表情图像在各基函数子集上的重构误差实现不同表情的分类识别。基于JAFFE人脸表情数据库的实验结果表明,该算法可以有效克服人脸身份对表情识别的影响,具有较高的表情识别率和鲁棒性。 相似文献
3.
用基于稀疏表示的分类方法识别遮挡人脸表情时,遮挡字典不具有冗余度且身份特征易干扰表情分类.针对此问题,文中提出一种基于稀疏表示的遮挡人脸表情识别方法.该方法首先通过对图像多级分块得到具有冗余度的遮挡字典,然后通过稀疏分解求出待测图像的稀疏表示系数,最后在待测图像所在的子空间内实现表情类别判断.该方法使待测图像的分解系数变得更稀疏,同时避免身份特征对表情分类的干扰.在Cohn-Kanade和JAFFE人脸库上的遮挡表情识别实验表明,该方法对遮挡人脸的表情识别具有较强的鲁棒性. 相似文献
4.
通过分析Gabor小波和稀疏表示的生物学背景和数学特性,提出一种基于Gabor小波和稀疏表示的人脸表情识别方法。采用Gabor小波变换对表情图像进行特征提取,建立训练样本Gabor特征的超完备字典,通过稀疏表示模型优化人脸表情图像的特征向量,利用融合识别方法进行多分类器融合识别分类。实验结果表明,该方法能够有效提取表情图像的特征信息,提高表情识别率。 相似文献
5.
针对疲劳驾驶严重威胁道路交通安全的问题,提出了一种基于多尺度稀疏表示的面部疲劳识别算法。该算法首先通过Gabor小波获取面部多尺度多方向的疲劳特征;然后采用2D-PCA方法对提取的特征进行降维处理,提高算法的执行效率;最后通过稀疏表示的方法构造疲劳的超完备字典并完成疲劳识别。实验在自建的疲劳数据库中完成,结果显示所提算法的疲劳识别率达到94.5%,具有一定的可行性。 相似文献
6.
为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表情图像进行稀疏表示,再利用压缩感知理论寻求低分辨率测试样本的最稀疏解,采用求得的最稀疏解实现低分辨率人脸疲劳表情的分类。在低分辨率人脸视觉特征的疲劳表情图像库TIREDFACE的实验测试结果表明,将该方法用于低分辨人脸疲劳表情识别,性能优于线性法、最近邻法、支持向量机以及最近邻子空间法。可见,该方法用于低分辨率人脸疲劳表情识别时识别效果较好,精确度较高。 相似文献
7.
为了降低人脸表情识别对待识别个体的依赖程度,控制识别字典规模,增加识别准确度,提出了一种基于协作低秩和分层稀疏的表情识别字典构建方法.通过协作低秩和分层稀疏表示(C-HiSLR)有效分离与待识别个体相关部分,保留表情变化部分,并结合标签一致区分字典学习(LC-KSVD)算法,进行相应待训练表情序列的重构识别和对应类别字典的区分程度的优化学习.该方法在CK+数据集上进行验证,识别效果较一般基于稀疏表示模型算法有明显的提升. 相似文献
8.
在表情识别中Gabor结合局部二值模式(LBP)的特征提取方法以及直方图统计降维虽然是较为局部化的方法,但LBP鲁棒性较差,识别精度不高,而且使用直方图统计来区分表情,其计算复杂度和特征维数依旧较高。中心对称局部二值模式(CS-LBP)与LBP相比具有较好的鲁棒性,但其对表情纹理细节的描述仍不够详细。因此提出基于Gabor结合改进的CS-LBP即二值叠加中心对称局部二值模式(二值叠加CS-LBP)的特征提取方法。用Gabor提取特征,同时用两种计算方式提取两个特征值并叠加,作为最终识别的特征;并通过离散余弦变换(DCT)降维,有效降低表情的特征维数。在JAFFE表情库中实验验证了该方法能有效提高识别精度。 相似文献
9.
针对传统LBP特征提取方法对非单调光线变化比较敏感且无法对全局特征进行稀疏表示的缺陷,提出一种自适应加权局部格雷码模式(Local Gray Code Patterns,LGCP)与快速稀疏表示相结合的特征提取方法。先对原始图像应用边缘检测算子最大化边缘值,以克服光线变化对特征描述的影响。采用LGCP编码得到八位格雷码并转换为十进制,然后对图像进行分块加权级联,使描述子能够对局部特征进行最优表征;同时,为了得到更好的全局特征的稀疏表示,将级联后的直方图分布特征描述子作为原子构造字典;最后,使用一种快速稀疏表示方法作为分类器进行分类识别。基于扩展Cohn-Kanade(CK+)表情数据集进行多组实验,结果表明该方法的识别速度更快,识别率可达94%。 相似文献
10.
为了克服非约束性(光照、遮挡、姿势等变化)条件下会大大降低人脸识别率的缺陷,提出一种基于Gabor相位和幅值信息的统一化局部二进制模式稀疏表示人脸识别算法.首先将人脸图像经过Gabor滤波器滤波得到Gabor相位和幅值图像,然后分块提取其统一化的局部二进制直方图,最后通过稀疏表示判断测试图像所属类.利用AR数据库进行实验的结果表明,与SRC、结合LBP和SRC特征的分割识别算法相比,该算法在非约束性条件下识别率最高. 相似文献
11.
受启发于人脸近似对称的先验知识,提出一种基于对称Gabor特征的稀疏表示算法并成功运用于人脸识别。首先把人脸图像进行镜像变换得到其镜像图像,进而将人脸分解为奇偶对称脸。在奇偶对称脸上分别提取Gabor特征,得到Gabor奇偶对称特征。通过一个加权因子,将奇偶特征融合生成新的特征。最后用这种新的特征构成超完备字典进行稀疏表示人脸分类。在人脸数据库AR和FERET上的实验结果表明所提算法在人脸有表情、姿势和光照变化情况下仍能获得较高的识别率。 相似文献
12.
针对人脸表情时空域特征信息的有效提取,本文提出了一种CBP-TOP(Centralized Binary Patterns From Three Orthogonal Panels)特征和SVM分类器相结合的人脸表情识别新方法。该方法首先将原始图像序列进行图像预处理,包括人脸检测、图像截取和图像尺度归一化,然后用CBP-TOP算子对图像序列进行分块提取特征,最后采用SVM分类器进行表情识别。实验结果表明,该方法能更有效提取图像序列的运动特征和动态纹理信息,提高了表情识别的准确率。和VLBP特征相比, CBP-TOP特征在表情识别中具有更高的识别率和更快的识别速度。 相似文献
13.
Emotion recognition based on Electroencephalogram (EEG) has attracted much attention in brain-computer interaction. However, most existing methods usually focus on amplitude and spectrum of the EEG signal, leading to sub-optimal performances due to the insufficiency in modelling the complex intrinsic information of neural integration. To address this issue, this paper proposes to capitalize on the largely neglected phase synchronization (PS) between EEG channels which reflects the intrinsic rhythmic interactions between different channels in neural integration. Specifically, this paper develops a simple and novel feature extraction method which calculates the PS based sparse representation features to analyze emotion states. First, the EEG phase synchronization indexes (PSI) of all channel pairs are estimated as features to distinguish different emotions, since certain topographical maps on PSI reveal specific emotion states. Then principal component analysis is performed to eliminate redundant and noisy features in PSI. Finally, Sparse Representation based Classification (SRC) furtherly emphasize emotion-related features and restrain useless features. For the benchmark affective EEG dataset DEAP, the proposed method based on no-overlapping EEG features achieve an average accuracy of 94.5%, 87.61%, and 67.04% for the classification tasks respectively on two, three and four emotions, demonstrating the superiority over state-of-the-art emotion classification methods. 相似文献
15.
目的 人脸关键点检测和人脸表情识别两个任务紧密相关。已有对两者结合的工作均是两个任务的直接耦合,忽略了其内在联系。针对这一问题,提出了一个多任务的深度框架,借助关键点特征识别人脸表情。 方法 参考inception结构设计了一个深度网络,同时检测关键点并且识别人脸表情,网络在两个任务的监督下,更加关注关键点附近的信息,使得五官周围的特征获得较大响应值。为进一步减小人脸其他区域的噪声对表情识别的影响,利用检测到的关键点生成一张位置注意图,进一步增加五官周围特征的权重,减小人脸边缘区域的特征响应值。复杂表情引起人脸部分区域的形变,增加了关键点检测的难度,为缓解这一问题,引入了中间监督层,在第1级检测关键点的网络中增加较小权重的表情识别任务,一方面,提高复杂表情样本的关键点检测结果,另一方面,使得网络提取更多表情相关的特征。 结果 在3个公开数据集:CK+(Cohn-Kanade dataset),Oulu(Oulu-CASIA NIR&VIS facial expression database)和MMI(MMI facial expression database)上与经典方法进行比较,本文方法在CK+数据集上的识别准确率取得了最高值,在Oulu和MMI数据集上的识别准确率比目前识别率最高的方法分别提升了0.14%和0.54%。 结论 实验结果表明了引入关键点信息的有效性:多任务的卷积神经网络表情识别准确率高于单任务的传统卷积神经网络。同时,引入注意力模型也提升了多任务网络中表情的识别率。 相似文献
16.
针对QR码图像受污染、破损、遮挡时识别软件无法识别的问题,提出一种基于稀疏表示的QR码识别方法。以40类QR码图像作为研究对象,每类13幅,其中每类随机选取3幅共120幅作为训练样本,余下400幅作为测试样本。所有训练样本组成稀疏表示字典,测试样本为训练样本的稀疏线性组合,表示系数是稀疏的,对每一个测试样本,计算其在字典上的投影,具有最小残差值的类别,即为分类所属类别。最后将提出的方法与QR码识读软件PsQREdit的识别结果做了对比和分析。实验结果表明:提出的方法对于部分受污染、破损、遮挡的图像仍能正确识别,具有很好的鲁棒性,为QR码的识别提供了一种新的有效方案。 相似文献
17.
对稀疏表示在人脸识别中的应用进行了研究,提出了人脸识别的非负稀疏表示方法和采样方法.提出了非负稀疏表示的乘性迭代算法,分析了该方法与非负矩阵分解的联系,设计了基于非负稀疏表示的分类算法.在仿射传播算法的基础上,提出了人脸数据集的采样方法,并在人脸图像集上进行了实验.与稀疏表示相比,非负稀疏表示在计算复杂度和鲁棒性上具有优越性;与随机采样方法相比,该采样方法具有较高的识别精度. 相似文献
18.
针对目前大部分人脸表情识别算法中仅提取图像的某一类特征,导致特征参数不能全面反映脸部情感信息的问题,提出了一种基于特征融合和离散隐马尔可夫模型(HMM)识别的人脸表情识别方法。对同一个图像序列分别使用离散小波变换(DWT)和标准正交非负矩阵分解(ONMF)提取纹理信息,使用改进的主动表观模型(AAM)提取几何形变信息,再使用高维小样本下典型相关分析(CCA)对提取的两种特征进行特征融合,最后使用离散HMM来进行表情分类识别。实验结果表明,经过特征融合后,在较少特征向量维数下该方法能够达到较高的识别率和较快的识别速度。 相似文献
|