首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a wireless ATM system, a network must provide seamless services to mobile users. To support this, mobility function should be added to existing ATM networks. Through a handoff operation, a mobile user can receive a service from the network without disconnecting the communication. A handoff results in connection path rerouting during an active connection. To avoid cell loss during a handoff, cell buffering and rerouting are required in the network. A handoff switch is a connection breakdown point on an original connection path in the network from which a new connection sub‐path is established. It performs cell buffering and rerouting during a handoff. Cell buffering and rerouting can introduce a cell out‐of‐sequence problem. In this paper we propose a handoff switch architecture with a shared memory. The architecture performs cell buffering and rerouting efficiently by managing logical queues of virtual connections in the shared memory and sorting head‐of‐line cells for transmission, thus achieving in‐sequence cell delivery during a handoff. We also present simulation results to understand the impacts of handoffs on switch performance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Wireless ATM networks require efficient mobility management to cope with frequent mobile handoff and rerouting of connections. Although much attention has been given in the literature to network architecture design to support wide-area mobility in public ATM networks, little has been done to the important issue of user mobility estimation and prediction to improve the connection reliability and bandwidth efficiency of the underlying system architecture. This paper treats the problem by developing a hierarchical user mobility model that closely represents the movement behavior of a mobile user, and that, when used with appropriate pattern matching and Kalman filtering techniques, yields an accurate location prediction algorithm, HLP, or hierarchical location prediction, which provides necessary information for advance resource reservation and advance optimal route establishment in wireless ATM networks  相似文献   

3.
A new handoff management scheme for wireless ATM networks is proposed. In this scheme, all cells are connected to their neighboring cells by permanent virtual circuits (PVCs) and to the access switch (AS) by switched virtual circuits (SVCs) which are only for new calls. Some carefully chosen cells, called rerouting cells, are also connected to the AS by PVCs. In summary, if a mobile roams to an ordinary neighboring cell, its traffic path is simply elongated by a PVC connecting the old and new cells. If a mobile roams to a rerouting cell, its traffic path is rerouted to a PVC between the AS and rerouting cell. By using PVC's for handoff calls, we can guarantee fast and seamless handoff. At the same time, our scheme improves the path efficiency by limiting the maximum number of hops that a path can be extended. Also, allowing path rerouting at a suitable time means the network resources are more efficiently utilized  相似文献   

4.
As the volume of mobile traffic consisting of video, voice, and data is rapidly expanding, a challenge remains with the mobile transport network, which must deliver data traffic to mobile devices without degrading the service quality. Since every Internet service holds its own service quality requirements, the flow-aware traffic management in fine granularity has been widely investigated to guarantee Quality of Service (QoS) in the IP networks. However, the mobile flow-aware management has not been sufficiently developed yet because of the inherent constraints of flow routing in the mobile networks regarding flow-aware mobility and QoS support. In this paper, we propose a flow-aware mobility and QoS support scheme called mobile flow-aware network (MFAN) for IP-based wireless mobile networks. The proposed scheme consists of dynamic handoff mechanisms based on QoS requirements per flow to reduce the processing overhead of the flow router while ensuring QoS guarantee to mobile flows. The performance analyses of the proposed scheme demonstrate that MFAN successfully supports the mobile flow traffic delivery while satisfying the QoS requirement of flows in the wireless mobile IP networks.  相似文献   

5.
Mobile ATM offers a common wired network infrastructure to support mobility of wireless terminals, independent of the wireless access protocol. In addition, it allows seamless migration to future wireless broadband services, such as wireless ATM, by enabling mobility of end-to-end ATM connections. In spite of the diversity in mobile networking technologies (e.g., cellular telephony, mobile-IP, packet data services, PCS), all of them require two fundamental mechanisms: location management and handoff. This article describes different schemes for augmenting a wired ATM network to support location management of mobile terminals and handoff protocols for rerouting a connection data path when the endpoint moves. A prototype implementation of mobile ATM integrating mobility support with ATM signaling and connection setup, is presented. It shows how mobile ATM may be used to provide mobility support to an IP terminal using non-ATM wireless access  相似文献   

6.
An enhanced handoff scheme for ATM-based cellular networks in linear environments is proposed. Some regularly spaced cells are assigned as rerouting cells. If a handoff call comes to a rerouting cell, its traffic path is rerouted to a PVC between the cell and the ATM switch. If a handoff call comes to an ordinary cell, its traffic path is simply elongated by a PVC between the new cell and its previous cell. The path efficiency is improved  相似文献   

7.
We describe the QoS‐based rerouting algorithm that is designed to implement a two‐phase inter‐switch handoff scheme for wireless ATM networks. We propose to use path extension for each inter‐switch handoff, and invoke path optimization when the handoff path exceeds the delay constraint or maximum path extension hops constraint. We study three types of path optimization schemes: combined QoS‐based, delay‐based and hop based path rerouting schemes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Supporting mobility in asynchronous transfer mode (ATM)-based broad-band networks with wireless access links poses many technical challenges. One of the most important of these challenges is the need to reroute ongoing connections to/from mobile users as these users move among base stations. Connection rerouting schemes must exhibit low handoff latency, maintain efficient routes, and limit disruption to continuous media traffic while minimizing reroute updates to the network switches. In this paper we propose, describe an implementation for, and experimentally evaluate the performance of five different connection rerouting schemes. We show that one of these schemes, which operates in two phases, executes very fast reroutes (with a measured latency of 6.5 ms) in a real-time phase and, if necessary, reroutes again in a nonreal-time phase to maintain efficient routing. The scheme also results in negligible disruption to both audio (e.g., a 1-in-100 chance of a single packet loss at CD-quality audio rates of 128 kb/s) and low-bit-rate video (e.g., a 2-in-100 chance of a single packet loss for 1-Mb/s video) traffic during connection rerouting. Based on these results, we conclude that simple handoff schemes coupled with a connection management architecture are sufficient for supporting low-bit-rate continuous media applications over ATM-based wireless networks  相似文献   

9.
《Ad hoc Networks》2007,5(3):340-359
In the past five years Bluetooth scatternets were one of the most promising wireless networking technologies for ad hoc networking. In such networks, mobility together with the fact that wireless network nodes may change their communication peers in time, generate permanently changing traffic flows. Thus, forming an optimal scatternet for a given traffic pattern may be not enough, rather a scatternet that best supports traffic flows as they vary in time is required.In this paper we study the optimization of scatternets through the reduction of communication path lengths. After demonstrating analytically that there is a strong relationship between the communication path length on one hand and throughput and power consumption on the other hand, we propose a novel heuristic algorithm suite capable of dynamically adapting the network topology to the existing traffic connections between the scatternet nodes. The periodic adaptation of the scatternet topology to the traffic connections enables the routing algorithms to identify shorter paths between communicating network nodes, thus allowing for more efficient communications. We evaluate our approach through simulations, in the presence of dynamic traffic flows and mobility.  相似文献   

10.
One of the major design issues in wireless ATM networks is the support of inter-switch handoffs. An inter-switch handoff occurs when a mobile terminal moves to a new base station connecting to a different switch. Apart from resource allocation at the new base station, inter-switch handoff also requires connection rerouting. With the aim of minimizing the handoff delay while using the network resources efficiently, the two-phase handoff protocol uses path extension for each inter-switch handoff, followed by path optimization if necessary. The objective of this paper is to determine when and how often path optimization should be performed. The problem is formulated as a semi-Markov decision process. Link cost and signaling cost functions are introduced to capture the tradeoff between the network resources utilized by a connection and the signaling and processing load incurred on the network. The time between inter-switch handoffs follows a general distribution. A stationary optimal policy is obtained when the call termination time is exponentially distributed. Numerical results show significant improvement over four other heuristics  相似文献   

11.
Admission control in time-slotted multihop mobile networks   总被引:4,自引:0,他引:4  
The emergence of nomadic applications have generated a lot of interest in next-generation wireless network infrastructures which provide differentiated service classes. So it is important to study how the quality of service (QoS), such as packet loss and bandwidth, should be guaranteed. To accomplish this, we develop am admission control scheme which can guarantee bandwidth for real-time applications in multihop mobile networks. In our scheme, a host need not discover and maintain any information of the network resources status on the routes to another host until a connection request is generated for the communication between the two hosts, unless the former host is offering its services as an intermediate forwarding station to maintain connectivity between two other hosts. This bandwidth guarantee feature is important for a mobile network to interconnect wired networks with QoS support. Our connection admission control scheme can also work in a stand-alone mobile ad hoc network for real-time applications. This control scheme contains end-to-end bandwidth calculation and bandwidth allocation. Under such a scheme, the source is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network and the efficient support of real time applications. In the case of ATM interconnection, the bandwidth information can be used to carry out an intelligent handoff between ATM gateways and/or to extend the ATM virtual circuit service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine via simulation the system performance in various QoS traffic flows and mobility environments  相似文献   

12.
QoS routing in ad hoc wireless networks   总被引:11,自引:0,他引:11  
The emergence of nomadic applications have generated much interest in wireless network infrastructures that support real-time communications. We propose a bandwidth routing protocol for quality-of-service (QoS) support in a multihop mobile network. The QoS routing feature is important for a mobile network to interconnect wired networks with QoS support (e.g., ATM, Internet, etc.). The QoS routing protocol can also work in a stand-alone multihop mobile network for real-time applications. This QoS routing protocol contains end-to-end bandwidth calculation and bandwidth allocation. Under such a routing protocol, the source (or the ATM gateway) is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network and the efficient support of real-time applications. In addition, it enables more efficient call admission control. In the case of ATM interconnection, the bandwidth information can be used to carry out intelligent handoff between ATM gateways and/or to extend the ATM virtual circuit (VC) service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine the system performance in various QoS traffic flows and mobility environments via simulation. Simulation results suggest distinct performance advantages of our protocol that calculates the bandwidth information. It is particularly useful in call admission control. Furthermore, “standby” routing enhances the performance in the mobile environment. Simulation experiments show this improvement  相似文献   

13.
Mobility is gaining a tremendous interest among Internet users and wireless access networks are increasingly being installed to enable mobile usage. Internet mobility requires solutions to move between access networks with maintained network connectivity. Seamless mobility in turn means that the experience of using a service is unaffected while being mobile. Communication in next generation networks will use multiple access technologies, creating a heterogeneous network environment. Further, roaming between network service providers may take place. To enable mobile nodes to move between access networks within as well as between network service providers with minimal disruption, nodes should be able to maintain multiple active network connections. With the usage of multihomed nodes, seamless mobility can be achieved in already installed infrastructures, not providing mobility support. Mobility in heterogeneous access networks also requires network selections that scale for services. In this article we propose an architecture where application service providers and network service providers define service levels to be used by a mobile node and its user. The user selects a service and the service level from an application service provider. When performing access network selection, information received as part of an application service level will be used to find a network that supports the service required. The performance of available access networks will be monitored and considered when making the decision. Our proposed architecture provides solutions to move flows between interfaces in real-time based on network performance, quality of service signalling to correspondent nodes, and cancellation of flows to give way for more important traffic.  相似文献   

14.
Mobility management in next-generation wireless systems   总被引:29,自引:0,他引:29  
This paper describes current and proposed protocols for mobility management for public land mobile network (PLMN)-based networks, mobile Internet protocol (IP) wireless asynchronous transfer mode (ATM) and satellite networks. The integration of these networks will be discussed in the context of the next evolutionary step of wireless communication networks. First, a review is provided of location management algorithms for personal communication systems (PCS) implemented over a PLMN network. The latest protocol changes for location registration and handoff are investigated for mobile IP followed by a discussion of proposed protocols for wireless ATM and satellite networks. Finally, an outline of open problems to be addressed by the next generation of wireless network service is discussed  相似文献   

15.
We focus on how quality of service (QoS) guarantees can be provided for RSVP flows during handoff events in an IP micromobility network. For this purpose, RSVP message delays and signaling overheads should be minimized, and handoff service disruption should also be minimized. By rerouting the RSVP branch path at a crossover router at every handoff event, and establishing the new RSVP path between the CR and new BS in advance while the existing reservation path is maintained, ongoing RSVP flows can be kept with the guaranteed QoS. We propose the seamless switching of an RSVP branch path for soft handoff, and also show that this scheme could provide QoS guarantee with simulation and examples.  相似文献   

16.
We propose a mechanism to perform fast handover in IP-based wireless networks for real-time applications such as Internet telephony and videoconferencing. Our proposal is designed to reestablish the communication session traffic flow quickly and to minimize the service disruption delay that occurs during mobile IP handover. In this scheme, we propose two different mechanisms to handle micromobility and inter-subdomain mobility, respectively. Micromobility handover handles movements within the same subdomain. Inter-subdomain handover supports handovers between two adjacent subdomains. The reason for having several subdomains is to deploy the network over a wider area to keep the mobile user in the same network for as long as possible. The novelty of the scheme is to retransmit the buffered packets during micromobility handover and to use multicasting to reestablish traffic flow during inter-subdomain movement. The entire scheme is performed within a hierarchical topology based on next-generation IP networks. We analyze both micromobility and inter-subdomain mobility handovers, and display simulation results for both voice and video over IP for micromobility handover.  相似文献   

17.
The traffic performance of integrated 3G wide-band code division multiple access (WCDMA) and GSM/GPRS network is evaluated. This type of network links two cellular radio systems which have different set of frequency bands and the same coverage size. The base station of 3G WCDMA is installed on an existing GSM/GPRS site. Dual-mode mobile terminals use handoff to establish calls on the better system. The soft handoff or inter-frequency hard handoff occurs when mobile terminals of 3G WCDMA or GSM/GPRS move between two adjacent cells, respectively. The inter-system hard handoffs are used between 3G WCDMA and GSM/GPRS systems. The data rate conversions between different systems, soft handoff region size, multiple data rate multimedia services, and the effect of the mobile terminal mobility on the user mean dwell time in each system are considered in the study. The simulation results demonstrate that a great traffic performance improvement on the complementary use of 3G WCDMA and GSM/GPRS cellular radio networks compared with the use of GSM/GPRS cellular radio networks. When high-data rate transmission is chosen for low-mobility subscribers, both the handoff failure probability, and carried traffic rates increase with the new call generation rate. However, both rates decrease conversely with the increasing new call generation rate as soon as the new call generation rate exceeds a critical value. This causes the integrated networks saturation. The higher mean speed for the mobile terminals produces lower new call blocking probabilities and total carried traffic. The new call blocking probabilities and total carried traffic increase with the size of the soft handoff region.  相似文献   

18.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

19.
Mobile IP has been developed to provide the continuous information network access to mobile users. The performance of Mobile IP mobility management scheme is dependent on traffic characteristics and user mobility. Consequently, it is important to assess this performance in-depth through these factors. This paper introduces a novel analytical model of handoff management in mobile IP networks. The proposed model focuses on the effect the traffic types and their frame error rates on the handoff latency. It is derived based on general distribution of both successful transmission attempts and the residence time to be applicable in all cases of traffic characteristics and user mobility. The impact of the behavior of wireless connection, cell residence time, probability distribution of transmission time and the handoff time is investigated. Numerical results are obtained and presented for both TCP and UDP traffics. As expected, the reliability of TCP leads to higher handoff latency than UDP traffic. It is shown that, higher values of FER increase the probability of erroneous packet transfer across the link layer. A short retransmission time leads to end the connection most likely in the existing FA; however a long retransmission time leads to a large delivery time. The proposed model is robust in the sense that it covers the impact of all the effective parameters and can be easily extended to any distribution.  相似文献   

20.
In the future cellular mobile systems, the steadily growing mobile subscriber community and their demand for diversity of service place great challenge on the bandwidth utilization, especially in the wireless network part, as radio spectrum is a limited resource. Carefully planned radio usage is critical for both system capacity and service quality. Current research work in literature cares about two aspects of the service provision capability of cellular networks. One is capacity related that emphasizes the user admission capability and the other is service quality related that targets the connection continuity. However, actually achievable user accommodation capability is a cooperative result of both aspects. This paper mathematically reveals the impact of handoff protection, which is introduced to enhance connection robustness, on the capacity of cellular mobile systems. We first extract the basic mobility characteristics from the real world cellular environment to establish an ideal traffic model. Then a Markov approach is proposed to analyze the correlation between the user admission capability and the channel reservation, which is one strategy for handoff protection, and furthermore to answer the question how the user accommodation capability is affected by channel reservation in this ideal model. Simulation outcomes are provided for the creditability verification on the theoretical results. We find that system capacity and service quality are two conflicting objectives and tradeoff is inevitable. Finally, a dynamic channel reservation scheme is described to provide a mechanism for the tradeoff coordination between system revenue and service quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号