首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.  相似文献   

2.
Composite coatings composed of titanium nitride, TiN, and diboride, TiB2, were reactively produced by the electrothermally exploded powder spray technique, in which feedstock powder was prepared from titanium and boron nitride particles. The microstructure of the coating was composed of titanium-ceramic particles the size of which were on the order of several nanometers to a few hundred nanometers. Such reactive thermal spraying brought base-metal saturation into a coating layer at the early stages of coating formation. The ceramic composite spray using feedstock of TiN and TiB2 particles preferentially brought a new phase of cubic titanium boronitride together with TiN and TiB2 into a coating. On comparing such a coating to one produced by the conventional method, the reactive thermal spray coating was richer in TiN and TiB2 due to the excess nitrogen in the feedstock.  相似文献   

3.
Refractory zirconium diboride and tantalum monocarbide ceramic powders were sprayed using an electrothermal explosion caused by a high-voltage electric breakdown and large-current discharge heating. This spray technique was improved using a purpose-designed powder container, which made it possible to melt the powder completely and accelerate it to impinge on substrates. The electrical energy applied to the powder was estimated to be about twice the energy theoretically needed to melt just the powder. Although the ceramics used in this work are hard-sintered materials by nature, they could be sprayed and deposited to form coatings on metal substrates without additives and sintering agents. The coatings formed exhibited no chemical decomposition in the boride, and only small amounts of decarburization in the carbide due to its nonstoichiometry. The tantalum carbide coating mixed with iron and aluminum substrates in the range of 10 μm to several tens of micrometers.  相似文献   

4.
等离子体喷涂技术在面向等离子体材料钨涂层的制备中占据主导地位,本实验采用CuMo/MoW作为涂层的中间过渡层,分别以结晶钨粉和羰基钨粉为原料,用大气等离子体喷涂技术在CuCrZr合金基体(110 mm×130mm)上制备了3-4 mm厚的3种钨涂层.对钨涂层微观组织、力学性能和热学性能研究表明,羰基钨粉制备的钨涂层的综合性能优于结晶钨粉,且薄涂层的结合强度优于厚涂层.优化喷涂工艺后,金相法测得钨涂层孔隙率<2%,涂层的结合强度最大值为10 MPa,EDS测得氧含量为6%左右,纯钨层热导率最大值为12.52 W/(m.K),涂层氧含量过高导致涂层热导率显著降低.研究表明采用大气等离子体喷涂技术在铜合金上制备3~4mm厚的钨涂层是可行的,该技术可为下一步低成本、高性能厚钨涂层的制备奠定基础.  相似文献   

5.
Thermally sprayed coatings based on tungsten carbide are widely used but not yet fully understood, particularly with regard to the chemical, microstructural, and phase changes that occur during spraying and their influence on properties such as wear resistance. The available literature on thermally sprayed WC-Co coatings is considerable, but it is generally difficult to synthesize all of the findings to obtain a comprehensive understanding of the subject. This is due to the many different starting powders, spray system types, spray parameters, and other variables that influence the coating structures and cause difficulties when comparing results from different workers. The purpose of this review is to identify broad trends in the powder/processing/structure relationships of WC-Co coatings, classified according to powder type and spray method. Detailed comparisons of coating microstructures, powder phase compositions and coating phase compositions as reported by different researchers are given in tabular form and discussed. The emphasis is on the phase changes that occur during spraying. This review concerns only WC-12% Co and WC-17% Co coatings, and contrasts the coatings obtained from the cast and crushed, sintered and crushed, and agglomerated and densified powder types. Properties such as hardness, wear, or corrosion resistance are not reviewed here.  相似文献   

6.
Titanium carbide and chromium carbide multilayer coatings with varying individual layer thicknesses were synthesized by the co-evaporation of titanium, chromium, and carbon (through tungsten) ingots by electron beam-physical vapor deposition. The adhesion of the multilayer coatings was found to be greater than 50 N. The hardness of the titanium carbide/chromium carbide multilayer coatings was found to increase from 1302 VHN0.050 to 2052 VHN0.050 by decreasing the thickness of the individual layer from 1.2 to 0.1 μm. In addition, the average grain diameter was also found to decrease from 3.315 to 0.356 μm by decreasing the thickness of the individual layers. The fracture toughness of the TiC/CrC multilayer coatings decreased from 4.179 to 1.411 MPa-m with decreasing layer thickness. Lastly, the amount of compressive stress in both the TiC and CrC layers within the multilayer coating was found to decrease with decreasing individual layer thickness. The samples were characterized by various techniques including Vicker's hardness, X-ray diffraction, scanning electron microscopy, scratch testing and fracture toughness, with the results being presented.  相似文献   

7.
The double-layer deposition of composite SiC-TiBC (Ti-Si-B-C) films with various Si contents (0, 40, 55, 60 and 100 mol%) on Ti-B-C was achieved from mixtures of titanium tetra-ethoxide, boron tri-ethoxide, and/or hexa-methyl-disiloxane solutions at about 700 °C on WC-Co cutting tools by Ar/H2 thermal plasma CVD. The crystalline phases of TiB2, TiC, and SiC were identified in the coatings by thin film grazing incidence X-ray diffraction. The surfaces and cross-sections of the double-layer coatings were observed by scanning electron microscopy to reveal their microstructure. Cutting tests of the double-layer Ti-Si-B-C/Ti-B-C were carried out by determining the flank and crater wear. The wear rate of the double-layer formed with the Ti-Si-B-C composite over-layer with 55 mol% Si was the slowest of the five samples. In addition, the effect of surface roughnesses (Ra (μm) = 0.03, 0.20 and 0.55) on the coating and wear resistance of the double-layer Ti-Si-B-C/Ti-B-C with 55 mol% Si was investigated by cross-sectional SEM observation and cutting tests.  相似文献   

8.
WC-based cermet coatings are typically produced using the HVOF process, due to high particle velocity and the lower heating characteristic of this technique. Despite the effort of optimisation of the coating process, degradation of the feedstock materials such as decarburisation of WC and amorphization of the metallic phase still occurs. It is known that the coating properties do not depend only on the spray process and its parameters, but also on the feedstock powder characteristics such as its chemistry, carbide size, particle morphology and production method. The work presented here is part of a research program aimed at exploring the possible advantages of the Pulsed Gas Dynamic Spray (PGDS) process, as an alternative technique for the preparation WC-based cermet coatings. In this paper, WC-based coatings have been prepared using six different types of cermets powders. In order to study the effects of the feedstock powder on the coatings microstructures and hardness, the selected starting powders differed not only in microstructural features such as size and morphology but also in the chemistry and phases. Using different analysis technique (OM, SEM, XRD, and HV), a detailed comparison of powders and coatings microstructures, phase compositions, and hardness are presented and discussed in detail. It was found that the PGDS process preserves the microstructure of the starting cermet powders in such a way that no significant degradation of the phase composition, even those that show the pre-existence of complex carbides, has been observed. Furthermore, although the same spray parameters were used, the thickness, deposition efficiency, porosity, and micro-cracks within the coatings are different from one type of cermet to another, suggesting that PGDS optimum process parameters are material dependant.  相似文献   

9.
王建萍  唐菊  王灿  李小武 《表面技术》2018,47(2):117-122
目的研究镍基自熔性合金喷焊涂层成形机理,比较不同合金材料制备涂层的综合性能,以获得综合性能最佳的喷焊材料。方法以四种不同成分的镍基自熔性合金粉末作为喷焊材料,通过氧乙炔火焰在45钢基材表面进行喷焊。使用金相显微镜、X射线衍射、扫描电子显微镜等对喷焊层进行显微结构分析,并利用维氏硬度计、磨损试验机等对喷焊涂层性能进行对比分析。结果氧乙炔火焰制备的涂层与基体呈现良好的冶金结合,涂层和基体在喷焊过程中发生元素扩散,生成了金属间化合物,基体的整体性能有显著改善。随着材料中Cr、B、Si等合金元素含量的增加,喷焊时涂层中生成的BCr、Ni17Si3等共晶硬质相含量上升,促使涂层的显微硬度、耐磨性能等得到显著提升。其中,Ni60A涂层提升最为显著,其涂层硬度相当于基体硬度的2.5倍,耐磨性为基体的18.1倍。Ni25A涂层提升最小,其显微硬度是基体的1.3倍,耐磨性是基体的6.6倍。结论喷焊状态下的Ni60A涂层与基体冶金结合良好,涂层表面质量好,涂层性能最佳。  相似文献   

10.
The photocatalytic capabilities of titanium dioxide are widely published. Reported applications of titania coatings include air purification, water purification and self-cleaning. Suspension spray has been highlighted as a possible route for the deposition of highly active nanostructured TiO2 coatings. Published work has demonstrated the capabilities of suspension plasma spray and high-velocity suspension flame spray; however, little work exists for suspension flame spray (SFS). Herein, these three suspension spray processes are compared as regards their capability to produce photocatalytic TiO2 coatings and their potential for industrial scale-up. A range of coatings were produced using each process, manipulating coating parameters in order to vary phase composition and other coating characteristics to modify the activity. The coatings produced varied significantly between the processes with SFS being the most effective technique as regards future scale-up and coating photoactivity. SFS coatings were found to be up to nine times more active than analogous coating produced by CVD.  相似文献   

11.
The formation of a TiN-Ti composite coating by thermal spraying of titanium powder with laser processing of the subsequent coating in a low-pressure N2 atmosphere was examined. A low-pressure plasma spray system was used in combination with a CO2 laser. First, the coating was plasma sprayed onto a mild steel substrate using a N2 plasma jet and titanium powder in a controlled low-pressure N2 atmosphere. The coating was then irradiated with a CO2 laser beam in a N2 atmosphere, and the coating was heated with a N2 plasma jet. The amount of TiN formed in the coating was characterized by X-ray diffraction analysis. The influence of plasma spraying conditions such as plasma power, flow of plasma operating gases, chamber pressure, and laser irradiating conditions on the formation of TiN was investigated. The effect of TiN formation in the titanium coating on Vickers hardness of the coatings was examined. It was evident that coating hardness increased with an increase in TiN content in the coating and that a TiN-Ti composite coating with a hardness of more than 1200 H V can be obtained with the use of laser irradiation processing.  相似文献   

12.
Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.  相似文献   

13.
冷喷涂TC4涂层临界沉积速度计算及制备涂层性能研究   总被引:1,自引:1,他引:0  
目的研究冷喷涂TC4涂层的临界沉积速度及粒子温度对临界沉积速度的影响规律,并研究气体压强对沉积涂层性能的影响规律。方法理论研究上,采用有限元LS-DYNA软件中的Johnson-Cook塑性模型,选取3D164计算单元建立模型,研究粒子在不同温度和不同速度下碰撞基体后的形貌特征,确定粒子沉积临界速度。试验研究上,采用N_2作为冷喷涂驱动气体,在TC4合金上制备TC4涂层,然后采用SEM、Image J图像分析软件、硬度计等分析已沉积涂层的孔隙率和硬度等性能。结果 25、400、500、600℃温度下,计算表明10μm的TC4合金粒子在TC4基板上的临界沉积速度分别为730、465、392、361 m/s,即随粒子温度升高,粒子临界沉积速度降低,粒子沉积成涂层更容易。采用冷喷涂工艺在TC4基板上沉积TC4涂层,在N_2温度600℃、气体压力3 MPa的条件下,制备的TC4涂层厚度约1000μm,与TC4钛合金基体结合紧密,涂层孔隙率约为6.46%。结论气体温度升高,粒子临界沉积速度降低;气体压强变大,制备的涂层厚度就大且更加致密。  相似文献   

14.
The effects of commercially pure titanium particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20-49 μm) on the cold spray process and resulting coating properties were investigated. Numerous powder and coating characterizations were performed including: powder oxygen and nitrogen contents, powder flowability, powder compressibility, coating microhardness, coating porosity, LOM/SEM analyses, and XRD. Compared to spherical powders, the sponge and irregular CP-Ti powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities. XRD results showed no new phases present when comparing the various feedstock powders to corresponding coatings. A higher particle temperature was also obtained with larger particle size for all feedstock powder morphologies processed with the same set of spray parameters. A spherical powder with 29 μm mean particle size was found to have the lowest porosity coating and best cold sprayability. The relationships of several as-cold sprayed coating characteristics to the ratio of particle impact and critical velocities were also discussed.  相似文献   

15.
《Acta Materialia》2003,51(11):3085-3094
Hard and wear-resistant titanium nitride coatings were deposited by pulsed high energy density plasma technique on cemented carbide cutting tools at ambient temperature. The coating thickness was measured by an optical profiler and surface Auger microprobe. The elemental and phase compositions and distribution of the coatings were determined by Auger microprobe, x-photon electron spectroscope, and X-ray diffractometer. The microstructures of the coatings were observed by scanning electron microscope and the roughness of the sample surface was measured by an optical profiler. The mechanical properties of the coatings were determined by nanoindentation and nanoscratch tests. The tribological properties were evaluated by the cutting performances of the coated tools applied in turning hardened CrWMn steel under industrial conditions. The structural and mechanical properties of the coatings were found to depend strongly on deposition conditions. Under optimized deposition conditions, the adhesive strength of TiN film to the substrate was satisfactory with the highest critical load up to more than 90 mN. The TiN films possess very high values of nanohardness and Young’s modulus, which are near to 27 GPa and 450 GPa, respectively. The wear resistance and edge life of the cemented carbide tools were improved dramatically because of the deposition of titanium nitride coatings.  相似文献   

16.
TiO2 photocatalytic coatings were deposited through high velocity oxy-fuel spray using anatase powder and rutile powder as feedstock. The as-sprayed TiO2 coating was composed of anatase phase and rutile phase. The anatase content in the coating was significantly influenced by fuel gas flow and melting condition of spray powder. A high anatase content of 35% was achieved for the coating deposited using rutile powder. The anatase content in the coating deposited using anatase powder reached 55-65%. The as-sprayed TiO2 coating was photocatalytically reactive for degradation of acetaldehyde in air. The photocatalytic activity was influenced by spray conditions. The surface morphology and phase structure of coatings deposited at different spray conditions were investigated to clarify the relationship between the coating microstructure and activity. It is found that the photocatalytic activity is significantly influenced by anatase content and surface area.  相似文献   

17.
Due to their mechanical properties, WC-based cermet coatings are extensively used in wear-resistant applications. These coatings are usually produced using thermal spray processes. However, due to the nature and the environment of these spraying processes, the feedstock powder structure and properties suffer from decomposition, which subsequently degrade the performance of the coatings produced. The cold gas dynamic spraying process appears to be a promising alternative technique to preserve the properties of the feedstock powder during the coating preparation. Although the latter technique can minimize or eliminate the degradation of the sprayed material, the deposition of cermet using this technique is a difficult task. In this study, two types of cermet powders, the nanocrystalline (WC-15Co) and the conventional (WC-10Co4Cr) powders were deposited using the cold gas dynamic spraying and the pulsed gas dynamic spraying processes. The feedstock powders and coatings microstructures were investigated by OM, SEM and XRD, as well as their hardness. The results revealed the possibility of depositing cermet coatings onto aluminum substrates using both processes without any degradation of the carbide phase of the feedstock powder. The cold gas dynamic spraying process experienced difficulty in depositing and building up dense coatings without major defects. The pulsed gas dynamic process produced thick cermet (conventional and nanocrystalline) coatings with low porosity as long as the feedstock powder was preheated above 573 K.  相似文献   

18.
In present paper the influence of the tungsten carbide (WC) particle addition on the microstructure, microhardness and abrasive wear behaviour of flame sprayed Co-Cr-W-Ni-C (EWAC 1006) coatings deposited on low carbon steel substrate has been reported. Coatings were deposited by oxy-acetylene flame spraying process. Wear behaviour of coatings was evaluated using pin on flat wear system against SiC abrasive medium. It was observed that the addition of WC particle in a commercial Co-Cr-W-Ni-C powder coating increases microhardness and wear resistance. Wear behaviour of these coatings is governed by the material parameters such as microstructure, hardness of coating and test parameters (abrasive grit size and normal load). Addition of WC in a commercial powder coating increased wear resistance about 4-9 folds. WC modified powder coatings showed better wear resistance at high load. Heat treatment of the unmodified powder coatings improved abrasive wear resistance while that of modified powder coating deteriorated the wear resistance. SEM study showed that wear of coatings largely takes place by microgroove, crater formation and scoring. Electron probe micro analysis (E.P.M.A.) of unmodified and WC modified powder coating was carried out for composition and phase analysis.  相似文献   

19.
Nanocrystalline NiAl intermetallic powder was prepared by mechanical alloying (MA) of Ni50Al50 powder mixture and then deposited on low carbon steel substrates by high velocity oxy fuel (HVOF) thermal spray technique using two sets of spraying parameters. X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), differential scanning calorimetry (DSC), and hardness test were used to characterize the prepared powders and coatings. The MA of Ni50Al50 powder mixture led to the formation of NiAl intermetallic compound. The resulting powder particles were three dimensional in nature with irregular morphology and a crystallite size of ~10 nm. This powder was thermally sprayed by HVOF technique to produce coating. The deposited coating had a nanocrystalline structure with low oxide and porosity contents. The hardness of coatings was in the range of 5.40-6.08 GPa, which is higher than that obtained for NiAl coating deposited using conventional powders.  相似文献   

20.
The use of nanoscale WC grain or finer feedstock particles is a possible method of improving the performance of WC-Co-Cr coatings. Finer powders are being pursued for the development of coating internal surfaces, as less thermal energy is required to melt the finer powder compared to coarse powders, permitting spraying at smaller standoff distances. Three WC-10Co-4Cr coatings, with two different powder particle sizes and two different carbide grain sizes, were sprayed using a high velocity oxy-air fuel (HVOAF) thermal spray system developed by Castolin Eutectic-Monitor Coatings Ltd., UK. Powder and coating microstructures were characterized using XRD and SEM. Fracture toughness and dry sliding wear performance at three loads were investigated using a ball-on-disk tribometer with a WC-Co counterbody. It was found that the finer powder produced the coating with the highest microhardness, but its fracture toughness was reduced due to increased decarburization compared to the other powders. The sprayed nanostructured powder had the lowest microhardness and fracture toughness of all materials tested. Unlubricated sliding wear testing at the lowest load showed the nanostructured coating performed best; however, at the highest load this coating showed the highest specific wear rates with the other two powders performing to a similar, better standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号