首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cho YS  Lee YO  Chang J 《Radiation protection dosimetry》2005,116(1-4 PT 2):259-263
A project to construct the Korea Multi-purpose Accelerator Complex (KOMAC) is currently underway targeting a high-intensity proton beam with an average current of 4.8 mA. As for the first stage of construction, a 20 MeV linac is planned to be built by 2007 and additional DTL sections will be added to increase the proton energy to 100 MeV by 2012. In this paper, preliminary shielding estimates, such as the evaluation of the gamma ray and neutron dose rate around the beam dump, have been carried out with the three-dimensional (3-D) Monte Carlo transport code MCNPX in order to determine the shielding requirements. The tentative flux calculations using the 3-D deterministic code KATRIN, which can handle a coupled charged-neutral particle transport, were also performed and their results were compared with the MCNPX calculations.  相似文献   

2.
The Proton Engineering Frontier Project is building the Korea Multipurpose Accelerator Complex facilities from 2002 to 2012, which consists of a high-current 100 MeV proton linear accelerator and various beam-lines. This paper provides a preliminary estimate of the shielding required for the 20 mA proton linac and the beam-dump. For an accurate information on secondary neutron production from the guiding magnet and primary heat sink of the beam dump, proton-induced 63Cu and 65Cu cross section data were evaluated and applied to shielding calculations. The required thickness of the concrete was assessed by a simple line-of-sight model for the lateral shielding of the beam-line and the full shielding of the beam dump. Monte Carlo simulations were also performed using the MCNPX code to obtain the source term and attenuation coefficients for the three-dimensional lateral shielding model of the beam-line.  相似文献   

3.
The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles.  相似文献   

4.
Energy measurement of 50 MeV proton beam produced on the AVF MC-50 Cyclotron was conducted using a detector telescope with a NaI(Tl) scintillator as an E counter. Protons of various energies, elastically and inelastically scattered from the 12C target nucleus were measured at four different angles of 35°, 40°, 50° and 55°. We applied the chi-square method to determine the beam energy, which showed a well defined minimum chi-square corresponding to a beam energy of 49.6 ± 2.3 MeV at the 68% confidence level. Also the light output response of NaI(Tl) to proton energies between 31 and 44 MeV is linear within 0.5 MeV and is in good accord with the recent result of Romero et al. [Nucl. Instr. and Meth. A 301 (1991) 241].  相似文献   

5.
6.
The University of Pennsylvania is building a proton therapy facility in collaboration with Walter Reed Army Medical Center. The proposed facility has four gantry rooms, a fixed beam room and a research room, and will use a cyclotron as the source of protons. In this study, neutron shielding considerations for the proposed proton therapy facility were investigated using analytical techniques and Monte Carlo simulated neutron spectra. Neutron spectra calculations were done using the GEANT4 (v6.2) simulation code for various materials: water, carbon, iron, nickel and tantalum to estimate the neutron production at proton beam energies of 100, 175 and 250 MeV. Dose equivalent calculations were performed using analytical methods at various critical points within the facility, by folding the GEANT4 produced neutron spectra with dose equivalent rate data from the National Council on Radiation Protection and Measurements (NCRP) Report #144.  相似文献   

7.
This paper provides results of computer simulation studies with the goal to analyse issues regarding radiation protection for personnel, patients and third persons involved in hadron therapy treatment. The treatment room and the patient are modelled by simple cylindrical geometries at incident proton energies of 250 MeV. Monte Carlo simulations of the energy and angular dependence of proton, neutron and photon radiation fields and resulting ambient dose equivalent distributions outside the shielding walls are performed. In order to investigate systematic uncertainties due to the shielding materials and inherent to the computer models, various concrete compositions, densities and water contents are modelled, and the influence of simulation parameters on the results obtained is determined. Generally, good agreement is found between results provided by MCNPX and FLUKA computer codes. Variations in neutron ambient dose attenuation from -50 to +/-30% are found due to varying concrete composition. Changes in the water content of the concrete in the order of 8% may cause variations up to 20%.  相似文献   

8.
CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H? linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of the accelerator in its low-energy section, where the access area is located, and to calculate the induced radioactivity in the air and in the components of the accelerator. The latter study is particularly important for maintenance interventions and final disposal of radioactive waste. Two possible layouts for the CCDTL section of the machine were considered in order to evaluate the feasibility, from the radiological standpoint, of replacing electromagnetic quadrupoles with permanent magnet quadrupoles with a high content of cobalt.  相似文献   

9.
Following modifications on the beam line at the Orsay Protontherapy Center, dose measurements were performed in order to make a dose map in the treatment rooms and in the delimited radiation-controlled area around beam line. Measurements were performed using tissue-equivalent proportional counters and rem-counters. Analysis of TEPC single event measurements showed that high LET components (>10 keV.mum(-1)) represent 90 to 99% of total dose equivalent in the treatment rooms and 50 to 90% in the controlled area and quality factors range, respectively between 2 and 15. A fast neutron component was identified in the treatment rooms, where dose equivalent rate varied between few muSv.h(-1) to some dozen of mSv.h(-1). In high-energy radiation field rem-counters underestimated TEPC values for neutron component. The variation between instruments response according to the location is linked to energetic spectrum variations and instrument characteristics.  相似文献   

10.
Two polarimeters for proton and deuteron beams using the p+ 4He scattering and the 3He(d, p) reaction, respectively, are described. They are placed downstream from a scattering chamber so as to monitor the beam polarization throughout an experiment. Two of the three components of proton spin and six of the eight components of deuteron spin can be measured simultaneously.  相似文献   

11.
12.
As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.  相似文献   

13.
We have investigated position modulations of the polarized proton beam at the Texas A&M cyclotron correlated with spin state. Position modulations as large as 50 nm were measured with secondary electron emission beam centroid monitors. Previous measurements lacked the sensitivity necessary to see such small effects.  相似文献   

14.
Wide-angle beam propagation method for liquid-crystal device calculations   总被引:1,自引:0,他引:1  
Kriezis EE  Elston SJ 《Applied optics》2000,39(31):5707-5714
A wide-angle beam propagation method suitable for analyzing anisotropic devices involving liquid crystals is presented. The mathematical formulation is based on a system of coupled differential equations involving an electric and a magnetic field component. The contribution of all dielectric tensor elements is included. A numerical implementation based on finite differences is used. Numerical examples are focused on light-wave propagation within twisted nematic pixels found in microdisplays, with all effects arising at pixel edges that are incorporated. A comparison between the results obtained and the prediction of finite-difference time-domain simulations is conducted, showing satisfactory agreement. The required computational effort is found to be minimal.  相似文献   

15.
The objective of this study is to provide a set of proximity functions for electrons from 100 eV to 10 MeV. Numerical results of differential proximity functions are given graphically. The complete data set is available electronically upon request from the authors. The results can serve as a convenient database for anyone performing microdosimetric calculations in radiation fields of electrons. For mixed fields of electrons, the proximity functions can easily be derived from the proximity functions of monoenergetic electrons presented here.  相似文献   

16.
A comparison of calculated and measured values of the dose mean lineal energy (y(D)) for the former neutron therapy beam at Louvain-la-Neuve is reported. The measurements were made with wall-less tissue-equivalent proportional counters using the variance-covariance method and simulating spheres with diameters between 10 nm and 15 microm. The calculated y(D)-values were obtained from simulated energy distributions of neutrons and charged particles inside an A-150 phantom and from published y(D)-values for mono-energetic ions. The energy distributions of charged particles up to oxygen were determined with the SHIELD-HIT code using an MCNPX simulated neutron spectrum as an input. The mono-energetic ion y(D)-values in the range 3-100 nm were taken from track-structure simulations in water vapour done with PITS/KURBUC. The large influence on the dose mean lineal energy from the light ion (A > 4) absorbed dose fraction, may explain an observed difference between experiment and calculation. The latter being larger than earlier reported result. Below 50 nm, the experimental values increase while the calculated decrease.  相似文献   

17.
The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments.In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS).With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona—Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the “forward” and “sideward” proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.  相似文献   

18.
The main parameters of non-self-maintained discharge supported by a proton beam in inert gas are obtained. The discharge is used to study dust structures in nuclear excited plasma. Its main features include low gas pressure (~133 Pa) and low proton beam current density (~10?6 A/cm2). It is shown that a trap for negatively charged dust particles is formed in the discharge near-collector area at a sufficiently large negative voltage on the collector (?100 V), which is caused by a large negative potential jump in the Langmuir electrode layer whose width increases with distance from the center of the discharge. The possibility of generating stretched dust structures in non-self-maintained discharge is considered.  相似文献   

19.
A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号