首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation protection dosimetry in radiation fields behind the shielding of high-energy accelerators such as CERN is a challenging task and the quantitative understanding of the detector response used for dosimetry is essential. Measurements with ionisation chambers are a standard method to determine absorbed dose (in the detector material). For applications in mixed radiation fields, ionisation chambers are often also calibrated in terms of ambient dose equivalent at conventional reference radiation fields. The response of a given ionisation chamber to the various particle types of a complex high-energy radiation field in terms of ambient dose equivalent depends of course on the materials used for the construction and the chamber gas used. This paper will present results of computational studies simulating the exposure of high-pressure ionisation chambers filled with different types of gases to the radiation field at CERN's CERN-EU high-energy reference field facility. At this facility complex high-energy radiation fields, similar to those produced by cosmic rays at flight altitudes, are produced. The particle fluence and spectra calculated with FLUKA Monte Carlo simulations have been benchmarked in several measurements. The results can be used to optimise the response of ionisation chambers for the measurement of ambient dose equivalent in high-energy mixed radiation fields.  相似文献   

2.
The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.  相似文献   

3.
Monitoring of ionising radiation around high-energy particle accelerators is a difficult task due to the complexity of the radiation field, which is made up of neutrons, charged hadrons, muons, photons and electrons, with energy spectra extending over a wide energy range. The dose-equivalent outside a thick shield is mainly owing to neutrons, with some contribution from photons and, to a minor extent, the other particles. Neutron dosimetry and spectrometry are thus of primary importance to correctly evaluate the exposure of personnel. This paper reviews the relevant techniques and instrumentation employed for monitoring radiation fields around high-energy proton accelerators, with particular emphasis on the recent development to increase the response of neutron measuring devices > 20 MeV. Rem-counters, pressurised ionisation chambers, superheated emulsions, tissue-equivalent proportional counters and Bonner sphere spectrometers are discussed.  相似文献   

4.
CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c(-1). Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response.  相似文献   

5.
Workplace monitoring is a common procedure for determining measures for routine radiation protection in a particular working environment. For mixed radiation fields consisting of neutrons and photons, it is of increased importance because it contributes to the improved accuracy of individual monitoring. An example is the determination of field-specific correction factors, which can be applied to the readings of personal dosemeters. This paper explains the general problems associated with individual dosimetry of neutron radiation, and describes the various options for workplace monitoring. These options cover a range from the elaborate field characterisation using transport calculations or spectrometers to the simpler approach using area monitors. Examples are given for workplaces in nuclear industry, at particle accelerators and at flight altitudes.  相似文献   

6.
The field of scattered radiation produced by a stored 820 GeV proton beam in the HERA tunnel is studied. Neutron spectra and doses as well as fluences of charged particles were measured by means of conventional detectors. Secondary particles emitted at both small and large angles with respect to the beam are investigated. They were produced by interactions of the primary beam with a collimator and by interactions in the beam pipe with the rest gas, respectively. The results are compared with simulations performed by the Monte Carlo code FLUKA. Simplified geometries of the accelerator structure and its surroundings were used for the calculation. Measured and calculated doses agree within a factor of 2. On the basis of this agreement an analysis of the scattered radiation was performed by FLUKA to obtain fluences and doses due to scattered neutrons, protons, pions, electrons, positrons, and photons.  相似文献   

7.
A combination of the recombination principle of H(10) measurements with the use of the ionisation chambers containing boron has been presented, in order to increase the relative sensitivity of the chamber to neutrons by a factor close to the radiation quality factor of photoneutrons. Three types of the chambers were investigated. Two of them were filled with BF(3) and the third one contained electrodes covered with B(4)C. All the chambers were placed in paraffin moderators. The response of the chambers was investigated, depending on gas pressure and polarising voltage. The results showed that it was possible to obtain nearly the same response of the chamber to H(10) for photons and neutrons in a restricted energy range; however, further investigations are needed to make an optimum design.  相似文献   

8.
A new method is proposed for the determination of dose components in mixed radiation fields (gamma + neutrons) using a recombination chamber. The method involves the determination of the ratio of ionisation currents measured at two different voltages applied to the chamber without the need of determining the saturation current, neither in the radiation field investigated nor during calibration. Therefore, the chamber can be filled with a gas under a pressure much higher than that used in presently available recombination chambers. This paper presents theoretically derived formulae supporting the method and the experimental results of dose component measurements using a high-pressure recombination chamber filled with methane. The method can be used for determining neutron and gamma dose components in the environment, especially in the vicinity of nuclear centres.  相似文献   

9.
The dependence of the doses on solar activity for intermediate levels of the solar modulation parameter has been studied by means of simulations carried out by the Monte Carlo transport code FLUKA. The vertical cut-off rigidities investigated lie between 0.4 and 6.1 GV. The calculated results show that the linear dependence proposed in a previous work, for the effective dose rate as a function of the solar modulation parameter, can be considered as an acceptable approximation. In addition, some dosimetric characteristics of cosmic radiation and some properties of the dosemeters in use for monitoring in the cosmic ray environment have been analysed with a view to simplifying measurements. The depth-dose curves in the ICRU sphere and the response of a tissue-equivalent ionisation chamber have been determined by the FLUKA code for a number of cosmic ray spectra On the basis of the calculated results, it is concluded that a value of the depth. d, which would make the ambient dose equivalent a conservative predictor of the effective dose, cannot be specified for cosmic radiation. However, the operational quantity can be useful in order to verify the predictions of Monte Carlo calculations. It is demonstrated that a crude approximation of the ambient dose equivalent could be obtained by multiplying by 2 the absorbed dose measured by a tissue-equivalent ionisation chamber with wall thickness of 10 mm.  相似文献   

10.
The realisation of the National Center of Hadrontherapy was funded by the Italian Government in 2002. The Centre will be built in the area of Pavia (Italy). The synchrotron designed in the framework of this programme will accelerate protons and carbon ions up to 250 MeV and 400 MeV u(-1), respectively. Some of the main aspects which were taken into account in the design of the acceleration system are the patient's safety and the beam control. From this point of view an important role is played by the beam dumps in the synchrotron ring and upstream of the extraction system. In particular, an horizontal and a vertical beam dump will be installed in the synchrotron ring: the former will be used for lowering the beam intensity and the latter for beam abortion. The dump at the extraction will absorb the particles during the mounting and the falling ramps of the synchrotron magnetic cycle, thus extracting only the flat top of the ion spill. Beam dumps can produce intense fields of secondary radiation (neutrons, charged light-hadrons and photons) and high rates of induced activity, since they can absorb the beam completely. Usually they have to be shielded to protect the electronics during machine operation and to attenuate the radiation dose below the limits imposed by the law when the personnel access to the synchrotron hall. The part of the shielding design of the beam dumps concerning with the acceleration of protons was made using Monte Carlo simulations with the FLUKA code. Both induced activity and secondary radiation were taken into account. The shields against secondary radiation produced by carbon ions were designed, referring only to secondary neutrons, taking double-differential distributions from the literature as sources for the FLUKA simulations. The induced activity from carbon ions interactions was estimated analytically, using the data generated by the EPAX 2 code. The dose-equivalent rates from the induced radionuclides were calculated at 1 m from the shielded dumps, taking into account the contribution of activated components of the synchrotron ring.  相似文献   

11.
Alanine and Radio-Photo-Luminescence (RPL) dosemeters are passive dosemeters used to monitor absorbed dose in all kind of radiation fields. However, up to now both dosemeter types are calibrated to photon sources only. In order to study the response of RPL and alanine dosemeters to mixed high-energy particle fields like those occurring at CERN's accelerators, an irradiation campaign at the CERN-EC High-Energy Reference field Facility (CERF-field) was performed. In this facility a copper target is irradiated by hadrons with a momentum of 120 GeV/c. Dosemeters were exposed to various mixed radiation fields by placing them at various positions on the surface of the target. In addition to the experiment FLUKA Monte Carlo simulations were carried out, which provide information concerning the energy deposition at the dosemeter locations. This paper compares the measurements with the simulation results and discusses the radiation field compositions present at the various dosemeter positions on the target.  相似文献   

12.
Radiation protection around CERN's high-energy accelerators represents a major challenge due to the presence of complex, mixed radiation fields. Behind thick shielding neutrons dominate and their energy ranges from fractions of eV to about 1 GeV. In this work the response of various portable detectors sensitive to neutrons was studied at CERN's High-Energy Reference Field Facility (CERF). The measurements were carried out with conventional rem counters, which usually cover neutron energies up to 20 MeV, the Thermo WENDI-2, which is specified to measure neutrons up to several GeV, and a tissue-equivalent proportional counter. The experimentally determined neutron dose equivalent results were compared with Monte Carlo (MC) simulations. Based on these studies field calibration factors can be determined, which result in a more reliable estimate of H(*)(10) in an unknown, but presumably similar high-energy field around an accelerator than a calibration factor determined in a radiation field of a reference neutron source.  相似文献   

13.
The aircrew exposure to cosmic radiation can be assessed by calculation with codes validated by measurements. However, the relationship between doses in the free atmosphere, as calculated by the codes and from results of measurements performed within the aircraft, is still unclear. The response of a tissue-equivalent proportional counter (TEPC) has already been simulated successfully by the Monte Carlo transport code FLUKA. Absorbed dose rate and ambient dose equivalent rate distributions as functions of lineal energy have been simulated for several reference sources and mixed radiation fields. The agreement between simulation and measurements has been well demonstrated. In order to evaluate the influence of aircraft structures on aircrew exposure assessment, the response of TEPC in the free atmosphere and on-board is now simulated. The calculated results are discussed and compared with other calculations and measurements.  相似文献   

14.
The action of neutron fields on biological structures was investigated on the basis of chromosome aberration induction in human cells. Available experimental data on aberration induction by neutrons and their interaction products were reviewed. Present criteria adopted in neutron radiation protection were discussed. The linear coefficient alpha and the quadratic coefficient beta describing dose-response curves for dicentric chromosomes induced by neutrons of different energies were calculated via integration of experimental data on dicentric induction by photons and charged particles into the Monte Carlo transport code FLUKA. The predicted values of the linear coefficients for neutron beams of different energies showed good agreement with the corresponding experimental values, whereas the data themselves indicated that the neutron quadratic coefficient cannot be obtained by 'averaging' the beta values of recoil ions and other nuclear reaction products. This supports the hypothesis that neutron induced aberrations increase substantially linearly with dose, a question that has been object of debate for a long time and is still open.  相似文献   

15.
According to ISO 4037-3, calibrations of radiation protection dosemeters with photon radiation of energies above 3 MeV are performed under conditions of charged particle equilibrium. No information is provided concerning how to determine the response of dosemeters to radiation fields in the more general case when these conditions are not fulfilled. This paper deals with the production of mixed high energy photon and electron fields characterised by a lack or an excess of charged particles relative to conditions of equilibrium and describes a new procedure for the dosimetry in such fields. Through variation of the charged particle fluence fraction with respect to a nearly constant photon fluence, Hp(10) and H'(10) values varied by up to a factor of 1.74. The above mentioned basic study was utilised in the recent IAEA intercomparison (Co-ordinated Research Project 1996-1998) and EURADOS 'trial performance test' (1996-1998) for individual monitoring of photon radiation in testing response characteristics of individual dosemeters in non-charged particle equilibrium conditions.  相似文献   

16.
For an accurate determination of the absorbed doses in complex radiation fields (e.g. mixed neutron-gamma fields), a better interpretation of the response of ionisation chambers is required. This study investigates a model of the ionisation chambers using a different approach, analysing the collected charge per minute as a response of the detector instead of the dose. The MCNPX Monte Carlo code is used. In this paper, the model is validated using a well-known irradiation field only: a (60)Co source. The detailed MCNPX models of a Mg(Ar) and TE(TE) ionisation chamber is investigated comparing the measured charge per minute obtained free-in-air and in a water phantom with the simulated results. The difference between the calculations and the measurements for the TE(TE) chamber is within +/-2% whereas for the Mg(Ar) chamber is around +7%. The systematic discrepancy in the case of Mg(Ar) chamber is expected to be caused by an overestimation of the sensitive volume.  相似文献   

17.
In view of the introduction of International Commission on Radiation Units and Measurements operational quantities Hp(10) and Hp(0.07), defined for individual monitoring, it became necessary to develop an algorithm that gives direct response of the dosemeter in terms of the operational quantities. Hence, for this purpose and also to improve the accuracy in dose estimation especially in the mixed fields of X ray and gamma, an algorithm was developed based on higher-order polynomial fit of the data points generated from the dose-response of discs under different filter regions of the present TL dosemeter system for known delivered doses. Study on the response of the BARC TL dosemeter system based on CaSO(4):Dy Teflon thermoluminescence dosemeter discs in the mixed fields of X and gamma radiation was carried out to ensure that the accuracies are within the prescribed limits recommended by the international organisations. The prevalent algorithm, based on the ratios of the disc response under various filters regions of the dosemeter to pure photons, was tested for different proportion of two radiations in case of mixed field dosimetry. It was found that the accuracy for few fields is beyond the acceptable limit in case of prevalent algorithm. The new proposed algorithm was also tested in mixed fields of photon fields and to pure photon fields of varied angles. It was found that the response of the dosemeter in mixed fields of photons and its angular response are satisfactory. The new algorithm can be used to record and report the personal dose in terms of Hp(10) as per the international recommendation for the present TL dosemeter.  相似文献   

18.
The availability of the neutrons due to photonuclear reactions has been discussed by using synchrotron radiation with the beryllium targets. The superconducting wiggler with the magnetic field of approximately 10 T, which is installed into an 8 GeV class storage ring, can emit intense and high-energy photons to produce neutrons. By using MCNPX, the simulations were performed for the conceptual design of the neutron beamline to estimate the available intensity and to investigate the shield conditions. The results were discussed in comparison with other research reactors.  相似文献   

19.
Different approaches for the measurement of a relatively small gamma dose in strong fields of thermal and epithermal neutrons as used for Boron Neutron Capture Therapy (BNCT) have been studied with various thermoluminescence detectors (TLDs). CaF(2):Tm detectors are insensitive to thermal neutrons but not tissue-equivalent. A disadvantage of applying tissue-equivalent (7)LiF detectors is a strong neutron signal resulting from the unavoidable presence of (6)Li traces. To overcome this problem it is usual to apply pairs of LiF detectors with different (6)Li content. The experimental determination of the thermal neutron response ratio of such a pair at the Geesthacht Neutron Facility (GeNF) operated by PTB enables measurement of the photon dose. In the experimental mixed field of thermal neutrons and photons of the TRIGA reactor at Mainz the photon dose measured with different types of (7)LiF/(nat)LiF TLD pairs agree within a standard uncertainty of 6% whereas the CaF(2):Tm detectors exhibit a photon dose by more than a factor of 2 higher. It is proposed to determine suitable photon energy correction factors for CaF(2):Tm detectors with the help of the (7)LiF/(nat)LiF TLD pairs in the radiation field of interest.  相似文献   

20.
The ESRF operates a 6 GeV electron storage ring to produce X-rays. The experimental hall is classified as a free access area in terms of radiation protection. Interlocked radiation monitors guarantee the corresponding dose constraint. Measurements have shown that the radiation field outside the storage ring is dominated by neutrons. Apfel REMbrandt superheated drop detectors have been chosen. In total, 64 monitors are installed around the storage ring, interlocked to the accelerator personnel safety system. Since the radiation fields are highly pulsed, the response of the REMbrandt monitors to pulsed radiation was measured and compared with theoretical predictions. Dose recordings from the bubble detectors are shown, illustrating the good correlation between beam losses and dose rates, as well as showing the correspondence between neutron and photon dose values. Finally, around the beamline hutches, REMbrandt neutron monitors have been used to evaluate the ratio between neutron and photon dose rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号