首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a quadrupole mass spectrometer combined with an energy analyser, we have investigated the in-situ energy distribution of highly energetic ions generated during reactive sputtering of In-Sn alloy (IT) targets and non-reactive sputtering of Sn-doped In2O3 (ITO) ceramic targets. Ar+, In+, O+, O, O2, InO and InO2 ions with kinetic energies greater than 40 eV were clearly observed. Upon increasing the O2 flow ratio for reactive sputtering, the surface of the IT target changes from metal (metal mode) to oxide (oxide mode) via a state of mixed metal and oxide (transition region). O ions with the kinetic energy corresponding to cathode voltage are generated at the oxide layer, which expands upon the target surface with increasing O2 flow ratio in the metal mode and the transition region. In contrast, the flux of 60-eV Ar+ ions decreases with increasing O2 flow ratio. The presence of 125- and 200-eV In+ ions is attributed to the dissociation of InSnO2 and InO2 with the kinetic energy corresponding to cathode voltage, respectively, while the presence of 40- and 150-eV O+ ions is attributed to the dissociation of InO2 and O2 with the kinetic energy corresponding to cathode voltage, respectively.  相似文献   

2.
We propose a new high-rate reactive sputter-deposition method with two sputtering sources for fabricating TiO2 films. One source operates in a metal mode sputtering condition and supplies titanium atoms to the substrate. The other source operates in oxide mode and works as an oxygen radical source for supplying oxygen radicals to the substrate surface for promoting oxidization of titanium atoms. Each sputtering source is separated with a mesh grid from the deposition chamber, and Ar and oxygen gas are introduced separately through the titanium supply and oxygen radical sources, respectively. By using this reactive sputtering system, a deposition rate above 80 nm/min can be obtained for the deposition of TiO2 films with rutile structure.  相似文献   

3.
Nitrogen-doped titanium dioxide (TiO2  xNx) thin films desirable for visible light photocatalysts were prepared by reactive sputtering using air/Ar mixtures. Using air as the reactive gas allows the process to conduct at high base pressures (low vacuum), which reduces substantially the processing time. The obtained films transformed from mixed phases to anatase phase as the air/Ar flow ratio increased. Substitutional doping of nitrogen verified by X-ray photoelectron spectroscopy accounts for the red-shift of absorption edge in the absorption spectra. Anatase TiO2  xNx films could incorporate up to about 7.5 at.% substitutional nitrogen and a maximum of 23 at.% nitrogen was determined in the films with mixed phases. The optical band gaps of the TiO2  xNx films calculated from Tauc plots varied from 3.05 to 3.11 eV and those of the mixed phase ranged from 2.77 to 3.00 eV, which are all lower than that for pure anatase TiO2 and fall into the visible light regime.  相似文献   

4.
Zn-doped TiO2 films were prepared by means of pulsed DC reactive magnetron sputtering method using Ti and Zn mixed target. The deposition condition was optimized to produce uniform and transparent TiO2 films. Titanium was in the Ti4+ oxidation state in all Zn-doped TiO2 films. The zinc oxide deposited on the substrate was in the fully oxidized state of ZnO. Increase of zinc concentration inhibited the crystal growth in the TiO2 films. The surface morphology gradually changed from crystalline to amorphous along with the increase of doped zinc concentration. The optical transmittances of these films decreased only slightly with increasing zinc concentration due to very similar band edges of ZnO and anatase TiO2. The doped ZnO had weak influence on light absorption of the TiO2 films. When zinc concentration was very low (<1 at%), the photocatalytic activities of the doped films had nearly no difference from that of pure TiO2 film. Photocatalytic activities decreased obviously in the films containing high amount of zinc oxide.  相似文献   

5.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

6.
TiO2 films with thickness of about 500 nm were deposited on unheated non-alkali glass substrates by reactive magnetron sputtering using one Ti metal target with unipolar pulsed powering of 50 kHz and the plasma emission feedback system (PCU). In order to keep the very high deposition rate, the depositions were carried out in the “transition region” between the metallic and the reactive (oxide) sputter mode where the target surface was metallic and oxidized, respectively. Stable deposition was successfully carried out in the whole “transition region” with PCU at total gas pressure of 3.0 Pa. All the as-deposited films deposited in the “transition region” showed amorphous structure, which performed very low photocatalytic activity. After the post-annealing in air at higher than 300 °C, all the films crystallized to anatase polycrystalline structure. They performed both photoinduced decomposition of acetaldehyde and photoinduced hydrophilicity under UV light illumination. The highest deposition rate in this study to deposit the photocatalytic TiO2 films in the “transition region” was 90 nm/min, which was over twenty times higher than that for conventional sputter deposition processes.  相似文献   

7.
SnO2 films doped with Sb (ATO) were deposited both on unheated glass substrates and on glass substrates that had been heated at 200 °C by reactive sputtering of an Sb-Sn alloy target with a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system monitors the oxidation states of target surface by detecting the sputtering cathode voltage (impedance control method). The mf pulse wave is approximately square-shaped; this helps to reduce arcing on the target when high power density is applied on the cathode. In case of the ATO depositions on the heated substrate at 200 °C in the “transition region” of reactive sputtering, the deposition rate was 280 nm/min, the lowest resistivity of the ATO films was 4.6 × 10− 3 Ω cm and the optical transmittance was over 80% in the visible region of light.  相似文献   

8.
Sn-doped In2O3 (ITO) films were deposited on heated (200 °C) fused silica glass substrates by reactive DC sputtering with mid-frequency pulsing (50 kHz) and a plasma control unit combined with a feedback system of the optical emission intensity for the atomic O* line at 777 nm. A planar In-Sn alloy target was connected to the switching unit, which was operated in the unipolar pulse mode. The power density on the target was maintained at 4.4 W cm− 2 during deposition. The feedback system precisely controlled the oxidation of the target surface in “the transition region.” The ITO film with lowest resistivity (3.1 × 10− 4 Ω cm) was obtained with a deposition rate of 310 nm min− 1 and transmittance in the visible region of approximately 80%. The deposition rate was about 6 times higher than that of ITO films deposited by conventional sputtering using an oxide target.  相似文献   

9.
HfO2 films at various O2/Ar flow ratios were prepared by reactive dc magnetron sputtering. The effects of O2/Ar ratio on the structure and properties of HfO2 films were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-Visible spectroscopy. The results showed that the HfO2 films were amorphous at different O2/Ar ratios, and the atomic ratio of O/Hf in the HfO2 films at high O2/Ar ratio was nearly to 2:1. The peaks of Hf4f and O1s shifted to higher binding energy with increasing the oxygen flow proportion. The HfO2 films at high O2/Ar ratio had high transmissivity at the range of 400-1100 nm.  相似文献   

10.
Hydrated ZrO2 thin films were prepared by reactive sputtering in O2, H2O, and H2O + H2O2 mixed gas, and the effect of the sputtering atmosphere on ion conductivity of the films was investigated. The results showed that the films deposited in O2 gas exhibited poor ion conductivity; however, the ion conductivities of the films deposited in the other two kinds of atmosphere were similar and 300-500 times higher than that of the films deposited in O2 gas. It was indicated that the higher ion conductivity of the films was caused by lower film density and higher water content.  相似文献   

11.
This article reports on preparation, characterization and comparison of TiO2 films prepared by sol-gel method using the titanium isopropoxide sol (TiO2 coating sol 3%) as solvent precursor and reactive magnetron sputtering from substoichiometric TiO2 − x targets of 50 mm in diameter. Dual magnetron supplied by dc bipolar pulsed power source was used for reactive magnetron sputtering. Depositions were performed on unheated glass substrates. Comparison of photocatalytic properties was based on measurements of hydrophilicity, i.e. evaluation of water contact angle on the film surface after UV irradiation. It is shown, that TiO2 films prepared by the sol-gel method exhibited higher hydrophilicity in the as-deposited state but has significant deterioration of hydrophilicity during aging, compared to TiO2 films prepared by magnetron sputtering. To explain this effect AFM, SEM and high resolution XPS measurements were performed. It is shown that the deterioration of hydrophilicity of sol-gel TiO2 films can be suppressed if as-deposited films are exposed to the plasma of microwave oxygen discharge.  相似文献   

12.
The reactive magnetron sputtering method was used to prepare pure and Fe-doped titanium dioxide thin films. The films were deposited onto microscope glass slides and polycarbonate plates at different total pressure and Fe-doping concentrations. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-visible spectroscopy (UV). For glass substrates a polycrystalline TiO2 structure was verified with X-ray diffraction, which showed typical characteristic anatase reflections. An iron phase appeared in the highly Fe-doped samples. The absorption edges of the Fe-doped TiO2 films shifted to visible region with increasing concentration of iron. For the polycarbonate substrate an amorphous TiO2 structure was revealed for all deposition conditions. The effects of different Fe-doping and total pressure levels on the photocatalytic activity were obtained by the degradation rates of Rhodamine-B (RoB) dye under UV light irradiation. For the deposition conditions considered in this study the highest photodegradation rates were achieved for films deposited on the polymer substrates. Of these overall highest rates was achieved for deposition at 0.4 Pa and without doping. However, for both substrates, films prepared at the particular total pressure of 0.5 Pa and a low iron concentration showed better photocatalytic activity than the pure TiO2 films prepared under the same deposition parameters. On the contrary, the photocatalytic degradation rates of RoB on the highly Fe-doped TiO2 films decreased strongly.  相似文献   

13.
M.C. Liao  G.S. Chen 《Thin solid films》2010,518(24):7258-7262
A series of TiO2 thin films was deposited onto glass substrates without intentional heating or biasing by magnetron sputtering of a titanium target using Ar/O2 reactive mixtures over a broad range of total sputtering pressures from 0.12 Pa to 2.24 Pa. Each of the film types was deposited by the threshold poisoned mode at a specific given oxygen flow rate monitored in-situ by optical emission spectroscopy. Both the sputtering pressure and thermal annealing are the key factors for the TiO2 films to yield fast-response superhydrophilicity with a water contact angle of 5°. The mechanism of superhydrophilicity for the TiO2 films deposited by high-pressure sputtering will be discussed based on empirical studies of X-ray diffractometry, high-resolution scanning microscopy and atomic force spectroscopy.  相似文献   

14.
Ta-doped SnO2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn-Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm− 2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10− 3 Ωcm, where the deposition rate was 250 nm min− 1.  相似文献   

15.
TiO2/SnO2 stacked-layers are synthesized by reactive sputter deposition on the glass substrate. Very thin TiO2/SnO2 bilayer-photocatalysts exhibited a very high photocatalytic activity for a degradation of gaseous acetaldehyde. Both the control of an electronic structure of TiO2 overlayer in the near-surface region and the interfacial separation of photogenerated electrons/holes in the TiO2/SnO2 stacked-layer are keys to improve the photocatalytic performance.  相似文献   

16.
ZrO2 films were deposited by reactive gas flow sputtering (GFS) where voltage is applied to a cyindrical hollow-cathode target from a DC source, the discharge being produced at relatively high sputtering pressure. In this system, secondary electrons form a major component of the total current flow and lead to heating of the substrate which in turn has an effect on the properties of deposited films. The present experiments were carried out under the following conditions: Ar gas flow rate of 200 sccm, O2 flow rate FO2 in the range between 0.003 and 1 sccm, and sputtering power (PS) in the range of 50-800 W. The reults showed that the crystal structure of the films deposited for PS below 200 W was monoclinic but for PS above 400 W, the films included tetragonal cystals of stable structure formed at high temperature by the electron bombardment. The films were formed with grains of 20-100 nm in diameter in a porous structure. The mechanical properties of the films were determined by a nanoindentation technique. Martens hardness (HM) of the porous films was found to be in the range between 220 and 330 MPa which is substantially less than that of films typically deposited by rf magnetron sputtering.  相似文献   

17.
L. Liljeholm  T. Nyberg  A. Roos 《Vacuum》2010,85(2):317-321
Coatings of SiO2-TiO2 films are frequently used in a number of optical thin film applications. In this work we present results from depositing films with variable Si/Ti ratios prepared by reactive sputtering. The different Si/Ti ratios were obtained by varying the target composition of composite single targets. Compared to co-sputtering this facilitates process control and composition uniformity of the films. Varying the oxygen supply during sputter deposition can result in films ranging from metallic/substoichiometric to stoichiometric oxides. Transmittance spectra of the different films are presented and the optical constants are determined from these spectra. Furthermore, the deposition process, films structure and composition of the films are discussed. The study shows that by choosing the right composition and working in the proper oxygen flow range, it is possible to tune the refractive index.  相似文献   

18.
Silicon Dioxide (SiO2) thin film deposition processes were studied with the use of classical Molecular Dynamics (MD) simulations combined with Monte Carlo (MC) simulations. The MC simulations are shown to efficiently emulate thermal relaxation processes during deposition. Dependence of deposited film properties on the incident kinetic energies is examined from the numerical simulations.  相似文献   

19.
The quaternary semiconductor Cu2ZnSnS4 (CZTS) is a possible In-free replacement for Cu(In,Ga)Se2. Here we present reactive sputtering with the possibility to obtain homogeneous CZTS-precursors with tunable composition and a stoichiometric quantity of sulfur. The precursors can be rapidly annealed to create large grained films to be used in solar cells. The reactive sputtering process is flexible, and morphology, stress and metal and sulfur contents were varied by changing the H2S/Ar-flow ratio, pressure and substrate temperature. A process curve for the reactive sputtering from CuSn and Zn targets is presented. The Zn-target is shown to switch to compound mode earlier and faster compared to the CuSn-target. The precursors containing a stoichiometric amount of sulfur exhibit columnar grains, have a crystal structure best matching ZnS and give a broad peak, best matching CZTS, in Raman scattering. In comparing process gas flows it is shown that the sulfur content is strongly dependent on the H2S partial pressure but the total pressures compared in this study have little effect on the precursor properties. Increasing the substrate temperature changes the film composition due to the high vapor pressures of Zn, SnS and S. High substrate temperatures also give slightly denser and increasingly oriented films. The precursors are under compressive stress, which is reduced with higher deposition temperatures.  相似文献   

20.
Youl-Moon Sung 《Thin solid films》2007,515(12):4996-4999
Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide (TiO2) films on indium tin oxide (ITO) coated glass substrate for dye-sensitized solar cells (DSCs). Anatase structure TiO2 films deposited by reactive RF magnetron sputtering under the conditions of Ar/O2(5%) mixtures, RF power of 600 W and substrate temperature of 400 °C were surface-treated by inductive coupled plasma (ICP) with Ar/O2 mixtures at substrate temperature of 400 °C, and thus the films were applied to the DSCs. The TiO2 films made on these experimental bases exhibited the BET specific surface area of 95 m2/g, the pore volume of 0.3 cm2/g and the TEM particle size of ∼ 25 nm. The DSCs made of this TiO2 material exhibited an energy conversion efficiency of about 2.25% at 100 mW/cm2 light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号