首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用共混海岛纺丝法制备聚酰胺6/低密度聚乙烯/聚乙烯接枝马来酸酐(PA6/LDPE/PE-g-MAH)共混纤维,溶解剥离出LDPE基体相,可制备出PA6纳米纤维;研究了共混物的组成和纺丝条件对共混纤维的相结构、结晶、力学性能及PA6纳米纤维直径的影响。结果表明:随着共混物中PA6分散相含量增加,PA6纳米纤维的直径逐渐增大;PA6质量分数从30%增加至60%时,PA6纳米纤维平均直径由107 nm增至149nm;PA6质量分数为70%时,由于相逆转无法得到PA6纳米纤维;在PA6质量分数为55%条件下,提高拉伸倍数,PA6纳米纤维的直径进一步降低,且结晶度、力学性能增加。  相似文献   

2.
以聚苯硫醚(PPS)、聚酰胺6(PA6)为原料,采用共混熔融纺丝法制备出PPS/PA6共混海岛纤维,用甲酸溶解剥离基体相PA6,制得纳米PPS纤维;研究了PPS/PA6共混体系的流变性能以及PPS含量、螺杆转速对共混物及PPS纳米纤维的结构、性能的影响。结果表明:PPS/PA6共混物的纺丝温度为290℃;随着PPS含量增加,共混物中PPS岛相直径增加,分布变宽,PPS质量分数应小于60%;当共混物中PPS质量分数由20%增至55%时,PPS纳米纤维平均直径由104 nm升至150 nm;加工过程中,适当提高螺杆转速有利于PPS纳米纤维直径细化和均匀化,当螺杆转速由20 r/min增至60 r/min时,其平均直径由180 nm降至122nm;PPS与PA6共混后,两种聚合物结晶速率均提高,且得到的PPS纳米纤维结晶度约22%,高于纯PPS纤维的结晶度。  相似文献   

3.
含银PA6纳米纤维的制备及抗菌性能研究   总被引:5,自引:0,他引:5  
以次磷酸钠还原硝酸银制得银溶胶,按不同比例加入到质量分数为12%的聚己内酰胺(PA6)/甲酸溶液中,通过静电纺丝制备含银PA6纳米纤维毡,分析了纤维的表面形貌和抗菌性能。结果表明:当纤维中银质量分数为0.1%时,PA6纳米纤维对大肠杆菌的抑菌率达95%以上。扫描电镜和原子力显微镜分析表明,含银PA6纳米纤维比PA6纳米纤维平均直径稍粗,直径分布更集中,纤维直径为80~100 nm,但其表面有明显的褶痕,粗细节较多,不如PA6纳米纤维光滑。  相似文献   

4.
采用异形截面的聚酰胺6(PA 6)纤维作为主体材料,聚氨酯胶黏剂作为粘合材料,制备了具有高吸水率的PA 6纤维笔头,主要用作软笔笔头。研究了PA 6纤维的异形度对纤维笔头的孔隙结构的影响规律,探讨了异形截面纤维的异形度对纤维笔头的硬度、孔隙尺寸及分布、吸水率、引水时间的影响。结果表明:PA 6纤维的异形度对纤维笔头的硬度影响较小;十字形截面纤维笔头的内部孔隙尺寸偏小,且分布集中,三角形截面的纤维,笔头内部存在尺寸较大的孔隙;随着PA 6纤维异形度的增加,纤维笔头的吸水率上升,引水时间受纤维截面异形度和截面形状的影响;其中十字形截面纤维异形度最高,达到61.71%,对应纤维笔头的吸水率最高,为61.86%,饮水时间最短为40.58 s。  相似文献   

5.
用共沉淀法制备了锌铝、锌镁铝及镁铝层状双氢氧化物(LDHs),将LDHs经过500℃煅烧后,得到相应的纳米复合金属氧化物(MMO)。MMO经偶联剂表面改性后,与聚酰胺6(PA6)切片共混造粒、熔融纺丝制备MMO/PA6复合纤维,并织造了MMO/PA6织物。用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)以及红外成像仪等研究了MMO/PA6复合纤维的热性能、横截面形貌及MMO/PA6织物的红外辐射性能。结果表明:MMO/PA6复合纤维的可纺性好;加入MMO后,PA6复合纤维的强度下降约10%,但对PA6纤维的熔融温度没有影响;MMO的加入显著提高了PA6纤维的红外辐射性能,60℃保温的MMO/PA6织物,当MMO的质量分数为2.0%时,其温度高于空白PA6织物约2.0℃,具有优异的远红外辐射性能。  相似文献   

6.
《塑料加工》2005,40(3):42-42
最近世界PA(聚酰胺)系纳米复合材料开发和工业化取得了一些进展,有以一般PA6为基础树脂的复合材料,也有以PA12和特殊尼龙MXD6为基础树脂的纳米复合材料。日本北川工业公司、昭和电工公司和信州大学于2002年采用纳米粒子直接混合法制备了PA/碳纳米纤维纳米复合材料,碳纳米纤维含量20%,用于精密注射成型制品。  相似文献   

7.
通过母粒共混熔融纺丝法制备了圆形、三角形和十字形截面的聚酰胺6/石墨烯复合纤维。采用光学显微镜观察了纤维的截面形貌并计算其异形度,采用负离子测试仪、远红外发射率测试仪、恒温恒湿干燥箱表征了不同截面纤维的负离子释放性能、远红外辐射性能和纤维吸湿及其干燥速度。研究表明:圆形、三角形和十字形截面纤维的异形度分别达到6.31%、34.80%和58.29%。相对而言,异形度增大,会明显影响纤维的负离子释放浓度、吸湿速度及干燥速度,其中十字形截面纤维的负离子释放浓度最高达到1 820个/cm~3;另一方面,异形度的变化不会对纤维远红外辐射能力产生明显的影响,其远红外发射率在0.90~0.93,远红外辐射温升约为1.70℃。  相似文献   

8.
将磷系阻燃剂10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)与纳米石墨片(GNPs)复配加入到聚酰胺6(PA 6)聚合体系中,通过原位聚合的方式制备了PA 6/ODOPB/GNPs复合材料,再经熔融纺丝得到PA 6/ODOPB/GNPs复合纤维,并对复合材料及纤维的阻燃性能进行了研究。结果表明:ODOPB的加入导致复合材料的相对黏度下降,GNPs的添加对复合材料的相对黏度无明显影响;ODOPB与GNPs的复配协同作用提升了复合材料及纤维的阻燃抗熔滴性能,表现为凝聚相阻燃作用,ODOPB对PA 6具有优异的阻燃效果,GNPs具有优异的抗熔滴和抑烟效果;当添加ODOPB质量分数为5%、GNPs质量分数为2%时,复合材料的极限氧指数(LOI)可达31.8%,垂直燃烧达到V-0等级,复合纤维的LOI达29.8%;加入ODOPB及GNPs均会导致复合纤维的力学性能下降,当ODOPB质量分数为5%、GNPs质量分数为2%时,所得复合纤维的断裂强度从纯PA 6纤维的3.3 cN/dtex下降至1.5 cN/dtex。  相似文献   

9.
聚酰胺纤维     
《化纤文摘》2012,(3):6-7
20123040聚酰胺6-共聚酰胺-叠层硅酸盐纤维Kristofic Michal…;Fibres&Textiles in Eastern Europe,2007,15(5~6),p.34(英)为了改善PA6纤维的吸附和电性能,研究使用大分子改性的PA6纤维。改性剂由二元高分子半结晶共聚物(e-己内酰胺作主要组分,质量分数分别为5%、17%、30%来自己二酸十二乙撑三胺的尼龙盐)、PA6均聚物在纳米添加剂蒙脱土存在下合成而构成,同时,评估了这些改性剂的基本特征。质量分数分别为10%、20%、30%和50%合成的改性剂用于制备混合的M/F聚e-己内酰胺-改性剂纤维,  相似文献   

10.
PA6静电纺纳米纤维   总被引:5,自引:2,他引:3  
讨论了PA6静电纺丝工艺,利用扫描电镜(SEM)观察纤维的形态结构,研究了影响PA6静电纺丝 的因素及其对所形成纤维的形态、直径的影响。结果表明,在甲酸溶液中,PA6质量分数为8%、电压值为15 kV、喷丝头到收集板的垂直距离为20 cm是PA6静电纺丝的最佳工艺条件,可得到直径小于100 nm的PA6 纳米纤维。  相似文献   

11.
以聚丙烯为聚合物基体,以纳米碳酸钙为无机组分,采用聚对苯二甲酸乙二醇酯(PET)纤维,纤维截面形状分别为圆形、扁平形和三角形,通过熔融共混的方法制备了聚丙烯/纳米碳酸钙/异形纤维复合材料,并采用不同的改性剂对纳米碳酸钙进行表面改性,通过扫描电子显微镜观察了纳米碳酸钙的分散情况,重点分析了聚丙烯/纳米碳酸钙/异形纤维复合材料的结构与性能的关系。结果表明,硅烷偶联剂对碳酸钙表面有机化处理的效果好于硬脂酸;纤维截面形状不同对复合材料的增强效果也不同,其中比表面积最大的三角形纤维增强效果最佳;当纳米碳酸钙的含量为3%(质量分数,下同)(2%硅烷偶联剂处理)、三角形PET纤维的长径比为80、含量为2%(体积分数,下同)(4%硅烷偶联剂处理)时,制得的聚丙烯/纳米碳酸钙/异形纤维复合材料的屈服强度比纯聚丙烯提高近21%,弹性模量提高了约82%。  相似文献   

12.
概述了差别化聚酯纤维的开发技术,即纤维异形化、功能化以及复合功能化;综述了差别化聚酯纤维的品种开发现状,主要品种有超细纤维、中空纤维;抗菌除臭纤维、抗紫外线纤维、阻燃纤维等单一及复合功能纤维。指出多重功能纤维将是差别化聚酯纤维的发展方向,熔体直纺在线添加技术是实现聚酯纤维差别化的主要途径。  相似文献   

13.
室温下,将再生纤维素与透明质酸(HA)、肝素(Hep)、丝素(SF)、甲壳素(N-ACS)等的复合纤维的纺丝液溶于NaOH溶液中,通过喷丝头(孔径0.1mm)喷入含有40%~43%硫酸铵的10%硫酸溶液中,得到产率为75%~98%的新型白色、柔韧性较好的复合生物纤维。FT-IR结果显示,复合纤维组分间存在物理吸附和氢键相互作用;少量的HA、Hep、SF和N-ACS等纤维的添加可增加复合纤维的韧能,其中纤维素-SF复合纤维在SF含量为10%时纤度为9.9旦,韧度值为1.08g/旦,伸长率为35.0%,机械性能相对最好。SEM图像中可以看出复合纤维表面呈现条纹、鳞状、填充和均匀包覆的结构,复合纤维间存在一定的相容性;复合纤维直径为19~55μm,密度为0.1~0.36旦/μm。  相似文献   

14.
《合成纤维》2017,(7):14-16
采用聚合物熔融共混纺丝方法制备含有不同比例的生物质石墨烯的改性聚酰胺复合纤维,通过对其力学性能、远红外性能和抗菌性能的表征,发现随着生物质石墨烯含量的不断增加,复合纤维的力学性能、远红外发射率和抗菌性能得到改善;当生物质石墨烯质量分数为1%时,纤维的抗菌性能达到最佳。  相似文献   

15.
通过螺杆挤出法制备了玻璃纤维增强聚酰胺6/蒙脱土复合材料,利用电子万能试验机对复合材料的力学性能进行了测量,并对实验结果进行了分析。结果表明,随着玻璃纤维含量的增加,聚酰胺6/蒙脱土/玻璃纤维复合材料的拉伸强度和冲击强度相应地增大,且长度为12mm的玻璃纤维增强的复合材料比6mm玻璃纤维增强的复合材料高;当玻璃纤维含量为10%(质量分数,下同)时,12mm玻璃纤维增强的复合材料的拉伸强度和冲击强度分别比聚酰胺6/蒙脱土复合材料提高了17.4%和84.1%。  相似文献   

16.
Han Gi Chae  Tetsuya Uchida 《Polymer》2005,46(24):10925-10935
Polyacrylonitrile (PAN)/carbon nanotubes (CNTs) composite fibers were spun from solutions in dimethyl acetamide (DMAc), using single wall (SWNTs), double wall (DWNTs), multi wall (MWNTs) carbon nanotubes, and vapor grown carbon nanofibers (VGCNFs). In each case, CNT content was 5 wt% with respect to the polymer. Structure, morphology, and properties of the composite fibers have been characterized using X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, tensile tests, dynamic mechanical tests, as well as thermal shrinkage. While all nanotubes contributed to property improvements, maximum increase in modulus (75%) and reduction in thermal shrinkage (up to 50%) was observed in the SWNT containing composites, and the maximum improvement in tensile strength (70%), strain to failure (110%), and work of rupture (230%) was observed in the MWNTs containing composites. PAN orientation is higher in the composite fiber (orientation factor up to 0.62) than in the control PAN fiber (orientation factor 0.52), and the PAN crystallite size in the composite fiber is up to 35% larger than in the control PAN (3.7 nm), while the overall PAN crystallinity diminished slightly. Nanotube orientation in the composite fibers is significantly higher (0.98 for SWNTs, 0.88 for DWNTs, and 0.91 for MWNTs and VGCNFs) than the PAN orientation (0.52-0.62). Improvement in low strain properties (modulus and shrinkage) was attributed to PAN interaction with the nanotube, while the improvement in high strain properties (tensile strength, elongation to break, and work of rupture) at least in part is attributed to the nanotube length. Property improvements have been analyzed in terms of nanotube surface area and orientation.  相似文献   

17.
为比较不同秸秆类(芦苇秸秆、稻秸秆、麦秸秆)纤维对其制备复合材料性能的影响,以芦苇秸秆、稻秸秆、麦秸秆为填充材料,以聚氯乙烯(PVC)为基体材料,采用挤出成型工艺制备3种PVC/秸秆类纤维复合材料。对3种秸秆纤维进行了成分分析,对它们制备的复合材料进行了力学性能和吸水性能测试,并对3种复合材料进行了FTIR分析,用SEM观察了复合材料拉伸断面微观结构。结果表明,3种秸秆类纤维中,芦苇秸秆的纤维素、半纤维素和木质素含量最高,其制备的PVC复合材料结合界面和力学性能最佳,PVC/芦苇秸秆纤维复合材料拉伸、弯曲和冲击强度分别为36.79 MPa,67.19 MPa和7.01 k J/m2,比PVC/麦秸秆纤维复合材料分别提高了104.62%,89.7%,99.72%。3种PVC/秸秆类纤维复合材料中PVC/芦苇秸秆纤维复合材料24 h吸水率最低,比PVC/麦秸秆纤维复合材料降低67.36%。  相似文献   

18.
以矿渣微粉(SP)和玻璃纤维(GF)为填料,经共混、挤出造粒、注射成型工序制备聚已内酰胺(PA6)/GF/SP三元复合材料,采用扫描电子显微镜观察断口形貌,通过检测复合材料试样的拉伸强度、冲击强度研究不同GF/SP配比比例以及SP的粒径对复合材料的力学性能影响。结果表明,当GF/SP配比填料总量定为30 %(质量分数,下同),SP与GF比例为1∶3时,平均粒径为7 μm的SP有最好的增强效果,拉伸强度为96.8 MPa;当SP平均粒径为15 μm时,三元复合材料具有最佳的冲击强度,比纯PA6提高了32.4 %,达到8.31 kJ/m2。  相似文献   

19.
In this work, solutions of rare earth modifier (RES) and epoxy chloropropane (ECP) grafting modification method were used for the surface treatment of aramid fiber. The effect of chemical treatment on aramid fiber has been studied in a composite system. The surface characteristics of aramid fibers were characterized by Fourier transform infrared spectroscopy (FTIR). The interfacial properties of aramid/epoxy composites were investigated by means of the single fiber pull‐out tests. The mechanical properties of the aramid/epoxy composites were studied by interlaminar shear strength (ILSS). As a result, it was found that RES surface treatment is superior to ECP grafting treatment in promoting the interfacial adhesion between aramid fiber and epoxy matrix, resulting in the improved mechanical properties of the composites. Meanwhile, the tensile strengths of single fibers were almost not affected by RES treatment. This was probably due to the presence of reactive functional groups on the aramid fiber surface, leading to an increment of interfacial binding force between fibers and matrix in a composite system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4165–4170, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号