首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前国内的天然气净化厂脱水装置大多数都采用三甘醇(TEG)脱水,以此来降低产品气的露点达到外输指标。在甘醇再生过程中要向再生釜内通入产品气作为汽提气,降低重沸器汽相中的水汽分压,提高TEG的再生效果。而提气后的废气一般只是通过重力分离直接外排,造成了溶液损耗及环境污染。为了改变现状,长庆油田第二净化厂对废气焚烧系统进行了改造,本文主要介绍废气系统改造过程及改造后的的运行效果。  相似文献   

2.
目前国内大多数天然气净化厂都采用三甘醇(TEG)对原料气进行脱水处理,以此来降低产品气的水露点达到外输指标,且采用汽提再生的方法实现三甘醇再生。三甘醇再生产生的废气若直接外排会给环境、设备、工作人员等造成一定的伤害,并且造成能源浪费和三甘醇损失。针对三甘醇再生废气外排导致的一系列问题,在原流程的基础上每套或多套脱水装置共同增加一套三甘醇再生废气回收装置。利用HYSYS软件,以1 000×104m3/d的三甘醇脱水装置为例对原流程和改进流程进行模拟对比,结果表明:改进流程可回收利用汽提气123.36×104m3/a(20℃,101.325 k Pa),可节约干气99.84×104m3/a(20℃,101.325 k Pa)。改进流程可以很好地回收利用三甘醇再生废气、减少干气用量,具有一定的经济价值,为大规模的三甘醇脱水再生废气的回收利用提供了借鉴。  相似文献   

3.
高含硫天然气集气站三甘醇脱水工艺对比   总被引:1,自引:1,他引:0  
三甘醇(TEG)脱水工艺是目前天然气工业应用较为普遍的一种方法。从高含硫气田采出来的天然气需要先脱除其中的水分,以防止水合物生成及减轻天然气输送过程中产生酸液带来的腐蚀危害。三甘醇脱水工艺在各集气站中已经得到广泛使用,但不同的脱水工艺对管道和设备的腐蚀存在差别。通过HYSYS模拟,对三甘醇脱水典型工艺、再生废气回收利用工艺、三甘醇高压富液气提工艺、三甘醇低压富液气提工艺4种脱水工艺进行了论证。分析得出,三甘醇低压富液气提工艺的脱水效果好,减轻了对设备的腐蚀,并能显著降低H2S的排放,有效解决了再生废气的污染等问题,具有较高的推广价值。  相似文献   

4.
三甘醇脱水工艺是天然气工业中应用最早也最为普遍的一种方法。通常,采用气提再生对三甘醇贫液进行提浓,使得外输干气水露点达到环境要求。目前,由于三甘醇脱水工艺中再生废气采用直接排放的方式,当天然气中含有BTEX组分时,对环境与生产人员造成极大的危害。通过HYSYS模拟,论证了三甘醇脱水典型工艺流程,再生废气经过冷凝后回收用作气提气的改进工艺与DRIZO脱水工艺。分析得出,DRIZO脱水工艺脱水效果好,能耗低且能显著降低BTEX的排放,有效解决了再生废气的污染及三甘醇损失等问题,具有较高的推广价值。  相似文献   

5.
三甘醇脱水工艺是天然气脱水最常用的工艺,利用HYSYS软件对高含酸性气田进行三甘醇脱水模拟,研究酸性组分在三甘醇脱水工艺中的分布规律。研究发现当天然气高含酸性组分时,三甘醇不仅吸收水而且对酸性组分有较强的吸收性能。酸性组分溶于三甘醇将导致三甘醇性能下降、引起设备腐蚀以及闪蒸气和再生气会污染环境。针对高含酸性气田三甘醇脱水,提出采用富液汽提工艺,通过在吸收塔后设置富液汽提塔,利用净化气汽提,降低三甘醇富液中酸性组分的含量,从而降低对环境的污染,减少对工作人员的危害。  相似文献   

6.
��Ⱦ���ʴ���Һ�ľ���������   总被引:2,自引:1,他引:1  
三甘醇(TEG)是天然气净化过程中性能优良的脱水试剂,具有热稳定性好、吸水性强、容量再生、利用率高、对设备不产生腐蚀等优点。但是,在天然气净化工艺过程中,TEG会受到天然气所携带高矿化度地层水、凝析油、气井井下的污染物质等污染,往往会造成TEG溶液起泡、产生盐结晶以及高温降解。污染和少量变质的TEG溶液将会降低其脱水性能,影响外输天然气的气质,另外,污染的TEG溶液的排放,将会对环境赞成不同程度的污染。文章通过物理方法回收被污染的TEG溶液,使其再次投入到生产中,可获得较高的经济、利用效益。  相似文献   

7.
为了提高三甘醇脱水效果,有必要考察各种因素对脱水效果的影响。采用HYSYS软件对处理量为15×104m3/d的三甘醇处理装置进行定量分析。通过计算可知,一定范围内,降低湿天然气和贫甘醇进塔温度,提高贫甘醇浓度、TEG循环量、操作压力或者增加塔板数,脱水效果加强。在本装置中,湿天然气和贫TEG溶液的最佳进塔温度分别为30℃和36℃。理论塔板数为2,操作压力为6.4MPa,贫TEG溶液浓度为98.8%,循环量为0.3 m3/h时,天然气水露点从32℃降至-8.647℃。同时,引入少量汽提气可以大幅度降低脱水后干气的水含量,增强脱水效果。  相似文献   

8.
三甘醇脱水装置中BTEX的排放日益受到关注。采用HYSYS软件对含有BTEX组分的气田进行三甘醇脱水工艺模拟,并研究BTEX在三甘醇脱水工艺中的分布规律。模拟后发现:当天然气气质含有BTEX组分时,三甘醇对BTEX有一定的吸收性,BTEX在再生系统中解析并随着再生气排放到大气中,污染环境。通过研究不同循环量、重沸器温度、原料气温度、汽提气量等操作条件下BTEX的排放量,提出降低BTEX外排的相应措施。针对BTEX的污染问题,提出Ecoteg再生工艺替代常规三甘醇脱水工艺。通过对再生废气进行回收利用,达到BTEX近乎零排放的目的,从而降低对环境的污染以及避免操作人员身体健康受到危害。  相似文献   

9.
青海油田采气一厂采出的天然气含有大量的水分,经气液分离后,再经三甘醇工艺脱水气后外输.采用三甘醇再生橇精馏柱排放出来的气体(以下简称三甘醇再生废气)中大部分为水蒸气,经初步分析:成分主要以苯类和酚类为主、还有少量的其他物质,带有异味,并含有一定量的有害物质.三甘醇再生废气中苯类是造成异味的主要原因,直接排放时,不仅会造成环境污染,而且会对设备及人体健康造成危害.为此设计了一套集冷凝、分离、吸附、增压的工艺装置,既能解决尾气安全排放的问题,同时能将尾气中天然气回收再利用,初步估算该设备每天能回收约960 m3天然气,每年可节约天然气约34.5×104 m3,节能减排效果显著.  相似文献   

10.
孙坤  徐辉  尚涛  陈龙 《石化技术》2015,(6):60-61
天然气净化系统主要包括脱硫、脱水两个工段。其中,脱硫工段的主要任务是利用重力沉降、过滤分离的方法除去原料气中的游离水及固体杂质,然后通过胺液来吸收原料气中的H2S及部分CO2;脱水工段的主要任务则是以TEG为脱水剂来脱除湿净化气中的饱和水,经脱水后的净化气作为商品气外输,而TEG富液经再生后进入TEG吸收塔循环使用。  相似文献   

11.
三甘醇脱水装置换热网络夹点技术分析   总被引:4,自引:1,他引:3  
李奇  姬忠礼  张德元  詹钊 《天然气工业》2009,29(10):104-106
三甘醇(TEG)脱水工艺是目前国内外天然气净化中应用最广泛的脱水工艺。为有效降低装置能耗,应用夹点技术对TEG脱水装置的换热网络进行了优化分析,运用HYSYS流程模拟软件模拟TEG脱水流程,并从模拟工艺数据中提取参与换热的冷、热物流物性数据,应用温-焓图、栅格图和问题表格法等夹点分析技术对TEG脱水流程的换热网络进行分析,找到装置用能的“瓶颈”--冷、热物流传热温差过大,阻碍热量进一步回收。综合分析温-焓图和TEG再生工艺,发现通过提高富TEG溶液换热后温度,可以降低物流传热温差,增加热量回收。对比优化前后天然气TEG脱水装置的工艺流程,HYSYS模拟所得能耗数据表明优化后脱水装置TEG再生器加热负荷降低了39.40%,问题表格法计算优化后贫TEG溶液冷却量减少了156.20 kW。  相似文献   

12.
目的通过天然气脱水有效降低H2S对高含硫天然气矿场集输系统的腐蚀危害。 方法在国内外高含硫天然气脱水技术研究的基础上,优选确定了三甘醇溶剂吸收法作为顺北二区高含硫天然气的脱水处理工艺,并在传统三甘醇脱水工艺流程的基础上充分考虑了顺北二区高含硫天然气的特点,局部优化改进了传统三甘醇脱水工艺流程,增加了原料气进吸附塔前的分离处理工艺和闪蒸气回收处理工艺;同时,基于富甘醇预热位置、再生纯度以及H2S的影响,开发了两级贫/富液换热预热、LNG气化气提的富甘醇再生工艺流程。 结果改造后,脱水工艺通过增压回收处理实现了脱水系统含硫尾气零排放,通过LNG气化气提实现了三甘醇高效脱硫和提纯相结合,解决了酸性环境下再生装置的腐蚀及检修难题。 结论该脱水工艺有利于顺北二区总体开发规划的实现,形成了适用于顺北二区高含硫天然气的高压集输脱水流程,为后续顺北天然气区块的进一步开发提供了技术支撑。   相似文献   

13.
页岩气井的开发具有生产初期产气量大、中后期衰减快的生产特征。三甘醇脱水装置处理量过大会导致脱水负荷超过最佳工况的允许范围,脱水效果不理想。鉴于此,采用HYSYS软件对三甘醇(TEG)脱水装置进行了流程模拟,定量分析了三甘醇贫液质量分数、三甘醇循环量对三甘醇脱水装置脱水效果的影响,并根据脱水装置在不同处理量下的现场实际考核数据,与模拟结果进行对比验证,从而验证了模拟结果的准确性。研究结果表明,为满足三甘醇贫液质量分数在99%以上的生产控制指标,可在确保再生温度不超过热降解温度204 ℃的前提下,适当提高重沸器温度,并在15~25 m3/h的范围内合理提高汽提气量。当贫液质量分数高于99%、水露点远低于设计值时,建议在保证产品气水露点达标的前提下,适当降低三甘醇贫液的总循环量,从而降低重沸器燃料气耗量,降低能耗。   相似文献   

14.
靖边气田三甘醇脱水溶液净化方法研究   总被引:3,自引:3,他引:0  
靖边气田脱水用三甘醇溶液在长期使用过程中,由于地层水携带杂质、管线腐蚀产物、溶液降解产物等杂质不断累积,造成溶液品质下降,影响溶液的吸收和再生性能。针对三甘醇的污染情况,采用气相色谱仪等仪器分别对靖边气田三甘醇溶液的有效成分及杂质种类和含量进行了定性及定量检测,开展了单一净化方法的实验及工艺条件优化,并根据净化结果,研究了不同组合净化工艺,优选了石英砂过滤+活性炭脱色+离子交换组合工艺作为靖边气田三甘醇溶液净化工艺。采用优选的组合净化工艺处理现场废弃的三甘醇,净化后溶液中固体悬浮物、盐离子含量显著降低。将净化后的三甘醇用于集气站现场脱水,结果表明,净化后的溶液具有良好的脱水效果,能够满足生产需求。  相似文献   

15.
天然气生产中,从气井采出的天然气先进入集气站进行初步的气、液、机杂分离和水分脱除,然后通过管线输至天然气净化厂进行进一步净化处理。此过程中,集气站脱水撬成为了天然气初步脱水处理的关键设备。近年来,靖边气田B1站脱水撬在运行中出现三甘醇损失严重的情况,本文通过采取红外探测、高压水清洗等措施找到了三甘醇损失严重的原因,并开展了针对性的化学清洗作业,取得了较好的应用效果。  相似文献   

16.
根据延长气田Ⅰ期开发区块天然气组分、物性、生产规模等特点,采用MDEA脱碳,橇装TEG脱水净化工艺。延气2和延128净化厂建设规模都为300×104m3/d,可满足延气2-延128井区天然气处理需求。净化厂主体工程包括进站分离、天然气MDEA脱碳、天然气TEG脱水、天然气外输等;延气2净化厂纳入气井207口、集气站14座;延128净化站纳入气井164口、集气站10座。天然气经集气站分离、计量后进入净化厂,原料气进站压力为5.3 MPa,进站温度略高于地温。  相似文献   

17.
三甘醇脱水是天然气脱水的成熟工艺,但采用三甘醇脱水装置处理高含CO2天然气并没有成熟的经验。对采用三甘醇脱水装置处理高含CO2天然气的脱水效果、CO2对三甘醇寿命的影响因素进行了分析,根据三甘醇装置在溶液起泡、汽提塔液泛、设备腐蚀、出口气体水露点高等方面常出现的操作问题,提出了操作参数对产品气指标影响的合理建议。  相似文献   

18.
高含硫天然气净化新工艺技术在普光气田的应用   总被引:3,自引:0,他引:3  
普光气田的天然气具有高含H2S和含CO2及有机硫的特点,天然气净化难度大。为满足高含硫天然气净化的要求,普光天然气净化厂采用了MDEA法脱硫脱碳、TEG法脱水、常规Claus硫磺回收、加氢还原吸收尾气处理的天然气净化工艺路线。同时,在国内首次应用了气相固定床水解脱除羰基硫(COS)、中间胺液冷却、MAGR液硫脱气等国际先进的天然气净化新工艺和专利技术,通过不断地摸索及优化工艺参数,解决了原料气脱除有机硫、CO2选择性吸收、液硫深度脱除H2S等技术难题;还应用了溶剂串级吸收和联合再生工艺、能量回收利用等多项技术,通过优化调整胺液循环量、降低能耗等手段,降低了操作费用。高含硫天然气净化新工艺技术应用于普光气田后,净化装置运行稳定,净化气质量超过设计要求,达到了国家标准一类气的指标。  相似文献   

19.
天然气集输脱水脱硫工艺研究及发展方向   总被引:2,自引:0,他引:2  
天然气脱水的目的是保证天然气集输过程不析出液态水,不形成水合物,减小对管道和设备的腐蚀.甘醇脱水是世界上使用最为广泛的脱水技术,常用的是三甘醇(TEG)脱水,目前国内外开始重视甘醇脱水法和低温分离综合脱水的方法,其净化效果好,处理量大,自动化程度高,而且脱水的同时也脱油.在天然气中常含有H2S、CO2和有机硫化物,这些气相杂质的存在会造成金属材料腐蚀,并污染环境.利用元素钨、钼制取的化合物能够同时进行脱硫制硫,该法将成为液相氧化法脱硫工艺中一个值得重视的热点技术.  相似文献   

20.
目前,在我国已探明的天然气气田中,含硫天然气气田约占31.7%,而高含硫的天然气净化难度大,因此天然气的净化和使用就成为一个重要的研究课题。某高含硫气田天然气处理厂使用Sulfinol—M工艺脱除原料气中的H2S和部分CO2,采用三甘醇(TEG)吸收法脱除湿净化气中的H2O,最终得到的产品气符合国家标准GB17820《天然气》Ⅱ类技术指标。工程中采用二级常规克劳斯(Claus)工艺回收脱硫单元以及尾气处理单元汽提酸气中的H2S,并且在尾气处理单元使用串级SCOT工艺来降低SO2排放量。目前该高含硫气田工程已处于施工阶段,为以后的高含硫天然气处理工艺设计提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号