首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russian Engineering Research - The frictional interaction of carbon–carbon composites with steel at high temperatures is considered. The antifrictional properties of carbon–carbon...  相似文献   

2.
Rice husk ash of three different particle size ranges (50–75, 75–100 and 100–150 μm) a 3, 6, 9, and 12% by weight is reinforced with an aluminum alloy (AlSi10Mg) using the liquid metallurgy method. The dry sliding wear behavior of the composites in the cast conditions is examined using the pin-on-disc tribotesting machine for three different loads (20, 30, and 40 N) with three different sliding velocities (2, 3, and 4 m/s). The results reveal that the composite reinforced with the coarse rice husk ash particles exhibits superior wear resistance compared to the fine rice husk ash particles. The wear rate of the composite decreased with an increase in the weight percentage of rice husk ash particles for all size ranges. Finally, the wear mechanism was investigated with the worn surface using a scanning electron microscope.  相似文献   

3.
Self-lubricating polymer–steel laminated composites (SLC) consisting of matrix zones and filled zones were fabricated by a laminating–bonding process. The matrix zones were silicon steel sheets and the filled zones were polymer matrix filled with MoS2 and graphite, respectively. The control specimen was prepared by spraying a polymer composite coating on a GCr15 disc. The tribological properties of SLC were investigated using a ball-on-disc tribometer under different loads and frequencies. Compared to the control specimen, the friction coefficient and wear rate of SLC was reduced by 57% and threefold at 4 N and 6 Hz, respectively. In addition, the friction coefficient of SLC was low and stable under low reciprocating frequency, and it was high and fluctuating under high reciprocating frequency. In addition, the wear rate increased with increasing applied load and reciprocating frequency. Scanning electron microscopy (SEM) images show that the lubricating mechanism of SLC was that solid lubricants embedded in filled zones expanded and smeared a layer of transfer film on the sliding path to lubricate the surface. The thermal expansion of solid lubricants was simulated using ANSYS software with thermal-stress coupling. The simulation results showed the maximum temperature of the filled zones was 130°C, and the maximum normal displacement of solid lubricants was approximately 10 μm. This confirmed that the solid lubricants expanded effectively by the aid of frictional heat.  相似文献   

4.
In this study, the tribological properties of NiAl matrix composites with 1.5 wt% graphene nanoplatelets (NAG) at elevated temperatures were simulated and tested. NAG exhibits excellent characteristics at 100 and 200°C due to the formation of metal oxides and graphene nanoplatelets lubrication film. Furthermore, the removed layer thickness, the stress distributions, and the high stresses of the affected layer have been estimated theoretically. At 400°C, the friction coefficient increased due to the absence of the lubrication layer. In addition, the wear rate increased due to the excessive stresses, the increased layer thickness removal, and the propagation of subsurface cracks.  相似文献   

5.
NiCr–Al2O3–SrSO4–Ag self-lubricating composites were prepared by powder metallurgy method and the tribological properties of composites were evaluated by a ball-on-disk tribometer against alumina ball at wide temperature range from the room temperature to 1,000 °C in air. The linear coefficient of thermal expansion was evaluated for investigation of thermal stability of composites. The tribo-chemical reaction films formed on the rubbing surfaces and their effects on the tribological properties of composites at different temperatures were addressed according to the surface characterization by SEM, XRD, and XPS. The results show that the NiCr–Al2O3 composite with addition of 10 wt% SrSO4 and 10 wt% Ag exhibits satisfying friction and wear properties over the entire temperature range from room temperature to 1,000 °C. The composition of the tribo-layers on the worn surfaces of the composites is varied at different temperatures. The synergistic lubricating effect of SrAl4O7, Ag, and NiCr2O4 lubricating films formed on worn surfaces were identified to reduce the friction coefficient and wear rate from room temperature to 800 °C. Meanwhile, at 1,000 °C, the SrCrO4 and NiAl2O4 was formed on the worn surfaces during sliding process, combining with the NiCr2O4, Al2O3, Cr2O3, Ag, and Ag2O, which play an important role in the formation of a continuous lubricating film on the sliding surface.  相似文献   

6.
High strength, light weight, ease of fabrication, excellent castability, and good wear resistance make aluminum alloy composites suitable for commercial applications. In this work, a silica-rich ash particle (palmyra shell ash) was reinforced with aluminum alloy (AlSi10Mg) composites and its mechanical and tribological properties were studied. The aluminum alloy was reinforced with 3, 6, and 9 wt% of palmyra shell ash particles, and its dry sliding wear behavior was studied using a pin-on-disc machine under different loading conditions. The result shows that the dry sliding wear resistance of Al–palmyra shell ash composites was almost similar to that of fly ash– and rice husk ash–reinforced Al-alloy composites and these composites exhibit better wear resistance compared to unreinforced alloy. The palmyra shell ash particle weight fraction significantly affects the wear and friction properties of the composites. Scanning electron microscopic examination of the worn surface reveals that at various loads palmyra shell ash particles act as load-bearing constituents and the wear resistance of the reinforced palmyra shell ash with a size range of 1–50 µm was superior to that of unreinforced alloy. Mechanical properties (hardness and tensile strength) were also studied and it was observed that the reinforced Al-alloy showed a significant increase in mechanical properties.  相似文献   

7.
The tribological performance of halogen-free ionic liquids at steel–steel and diamond-like carbon (DLC)–DLC contacts was investigated. Hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (ta-C) were used as test specimens. Friction tests were carried out on steel–steel, a-C:H–a-C:H, and ta-C–ta-C contacts by using a reciprocating cylinder-on-disk tribotester lubricated with two different types of halogen-free ionic liquids: 1-ethyl-3-methylimidazolium dicyanamide ([BMIM][DCN]) and 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCC]). From the results of friction tests, the ta-C–ta-C tribopair lubricated with [BMIM][DCN] or [BMIM][TCC] exhibited an ultralow friction coefficient of 0.018–0.03. On the other hand, ultralow friction was not observed at the steel–steel and a-C:H–a-C:H contacts. Measurements obtained with a laser scanning microscope and an atomic force microscope (AFM) showed that a chemical reaction film, derived from the ionic liquid lubricant used, was formed on the steel surfaces. However, this chemical reaction film was not observed on either of the DLC surfaces. The AFM results showed that there were high-viscosity products on the ta-C surfaces, that the wear tracks on the ta-C surfaces exhibited low frictional properties, and that the ta-C surfaces were extremely smooth after the friction tests. Based on these results, it was concluded that an ionic liquid–derived adsorbed film formed on the ta-C surface and resulted in the ultralow friction when lubricated with a halogen-free ionic liquid.  相似文献   

8.
In this work, the tribological behavior of micrometer and submicrometer cenosphere particulate–filled E-glass fiber–reinforced vinylester composites have been investigated on a pin-on-disc tester under dry sliding and water-lubricated sliding conditions. Three different uniform sizes of cenosphere particles (2 μm, 900 nm, 400 nm) were used as fillers in the glass fiber–reinforced vinylester composites. The weight fraction of cenosphere particles has been varied in the ranges from 5, 10, 15, to 20 wt%. The experimental results show that all of the composites exhibited lower coefficient of friction and lower wear resistance under water-lubricated sliding conditions than under dry sliding. It has been noted that the submicrometer size (400 nm) cenosphere particulates as fillers contributed significantly to improve the wear resistance. It has also been noted that 10 wt% of the cenosphere particles is the most effective in reducing the wear rate and coefficient of friction. Effects of various wear parameters such as applied normal loads, sliding speeds, particle size, and particle content on the tribological behavior were also discussed. In order to understand the wear mechanism, the morphologies of the worn surface were analyzed by means of scanning electron microscopy (SEM) for composite specimens under both dry and water-lubricated sliding conditions.  相似文献   

9.
The friction and wear performance of WC-12Co air plasma–sprayed (APS) coating at temperatures of 25–650°C under loads of 8 and 28 N in at atmospheric environment have been studied by a ball-on-disc tribometer. The effect of temperature and load on the tribological behavior of WC-Co coating was investigated. The results show that under a load of 8 N, the wear volume of the coating increases at 250°C due to the coating splat delamination and then it gradually decreases at 350–500°C. The friction could promote the formation of double oxide (CoWO4), which is beneficial to reduce friction and wear. At higher temperatures, the wear volume increases again due to the removal of oxides. Under a load of 28 N, the wear volume of the coating increases enormously at 250°C due to the serious splat delamination. At 350°C, the load promotes double oxide formation, resulting in an early decrease in the coefficient of friction and a rapid reduction in wear volume. Although the wear volume decreases at 350–500°C, it is 10-fold higher than that under a load of 8 N. Above 500°C, the differences of the wear volumes of coatings under the two loads become less obvious, and similar trends also appear for the coefficients of friction. The synergistic effect between the load and temperature on the friction and wear mechanism of WC-12Co APS coating is discussed.  相似文献   

10.
Abstract

As a 3D printing technology, selective laser melting has remarkable advantages such as high processing flexibility, high material utilization, and short production cycle. The applications of selective laser melting technology in industry have become quite extensive. There are many tribological studies on selective laser melting materials, but few based on water lubrication (Zhu, et al., Journal of Zhejiang University-Science A, 19(2), pp 95–110). In this article, the tribological properties of 316L stainless steel processed by selective laser melting and traditional methods have been studied under water lubrication. Polyether ether ketone (PEEK) filled with carbon fiber (CF)/polytetrafluoroethylene (PTFE)/graphite was selected as the counterpart. 316L stainless steel and PEEK are a tribopair commonly used in water hydraulics. This study is of great significance to the application of selective laser melting material of tribopairs in water hydraulics. Friction and wear tests were carried out on a pin-on-disc contact test apparatus under different operating conditions. The friction coefficient, specific wear coefficient, scanning electron microscopy (SEM) of the worn surface, and energy-dispersive spectroscopy (EDS) of the surface adhesions of the three tribopairs were measured and compared. The results revealed that the friction coefficient of the selective laser melting (SLM) 316L stainless steel was significantly higher than that of traditionally processed (TP) 316L stainless steel, which might be caused by the pores on the surface of SLM 316L stainless steel. Adhesion and cutting on the surface of SLM 316L stainless steel were also more serious, resulting in a higher specific wear coefficient of its counterpart PEEK composite compared to PEEK composite against TP 316L stainless steel.  相似文献   

11.
Selecting the proper material and surface treatment methods for elements is one of the essential problems when designing water hydraulic components due to the corrosiveness and poor lubricity of water. Experimental investigation was performed to study the tribological properties of ion-nitrided 2Cr13, a kind of martensitic stainless steel, sliding on carbon fiber–reinforced polyetheretherketone (CFRPEEK). The influence of factors such as sliding velocity, load, and lubrication condition were studied through experiments mainly under tap water lubrication. It was found that the friction coefficients are influenced by both the pressure and the sliding velocity. In contrast, the friction coefficients between quenched 2Cr13 and CFRPEEK are much higher. Compared to water lubrication, both the wear rate and friction coefficients increase in the case of dry friction. Wear mainly occurred on the CFRPEEK. By examining the worn surfaces of the specimens, it was found that adhesion was the main form of wear of the PEEK composite.  相似文献   

12.
This article deals with the effect of extrusion on the microstructures and tribological properties of powder metallurgy–fabricated copper–tin composites containing MoS2 by optical microscopy, scanning electron microscopy (SEM), and tribotesting. The extrusion decreases the number of pores and increases the density and hardness and thus improves the tribological properties of the composites. Results demonstrated that abrasion is the dominant wear mechanism in all extruded composites, whereas a combination of adhesion and delamination appears to be the governing mechanism for prepared composites. The developed hot-extruded composites exhibited lower coefficient of friction and wear rates compared to prepared composites. Design Expert software was used to develop contour map.  相似文献   

13.
14.
In this study, we investigated the microstructural, mechanical, and tribological properties of rice husk (RH)-based carbon carbonized at various carbonizing temperatures under dry conditions. All samples exhibited amorphous carbon structures and the X-ray diffraction spectra of the samples carbonized at 1300 and 1400?°C indicated the presence of a polymorphic crystals of silica. The hardness increased with temperature due to the densification of the structure and the presence of the hard crystalline silica. At low normal loads, the mean friction coefficient of the material decreased as the carbonizing temperature was increased from 600 to 800?°C and slightly decreased as the carbonizing temperature was further increased from 800 to 1400?°C. At the highest load, all samples, except for that carbonized at 600?°C, exhibited extremely low friction coefficients (around 0.05). The wear rates of the all samples were smaller than 10?5 mm3/N·m, indicating that RH carbon exhibits sufficient wear resistance. A Raman spectroscopic analysis of the worn surface of a steel ball revealed that the transfer layer at 600?°C had a less graphitic structure compared to the other carbonizing temperature. Based on these findings, we recommend an optimal carbonizing temperature for applications of sliding materials exposed to dry sliding contact.  相似文献   

15.
The study aims at investigating the surface evolution and erosion–corrosion behavior of Q235 steel during erosion–corrosion process in various dynamic flows. For the purpose, true flow fields with the average flow velocities of 0.4 and 0.8 m/s and impact angles of 0°, 30° and 90° to the sample surface were successfully measured by particle image velocimetry. The topography of erosion–corrosion surface was observed by laser scanning confocal microscopy. The evolution of localized corrosion pattern is found to be determined by impact angle, i.e., round or elliptical corrosion pit corresponds to impact angle of 90° and ribbon-like corrosion pit corresponds to 0°. The deeper corrosion pits were observed at impact angle of 30° than those at the other two impact angles owing to combined effects of shear and normal stresses. Electrochemical impedance spectroscopy of samples shows smaller radiuses of capacitive loops at velocity of 0.8 m/s than those at 0.4 m/s. Equivalent circuit analysis implies unstable surface state of sample in dynamic flow. Above results indicate that the flow velocity and impact angle play the key role in the erosion–corrosion behavior of Q235 steel.  相似文献   

16.
A new type of Ti composite filled with Al-Cr-Fe quasicrystals (QCs) was developed via a spark plasma sintering process. The mechanical and tribological properties of the Ti/QC composites were systematically investigated. It was found that the hardness of the Ti/QC composites significantly increased with increased QC content due to the higher hardness of incorporated QCs than that of the Ti matrix. The tribological results clearly showed that the wear of the Ti/QC composites apparently decreased with increased QC content to 20 wt% as a result of the increased wear resistance of the composites. An excessive loading of 30 wt% QCs resulted in the decreased wear resistance of the Ti/QC composites. It could be concluded that the incorporation of QCs significantly improved the mechanical and tribological properties of the Ti/QC composites with an optimized QC content of 20 wt%.  相似文献   

17.
In the present work, a detailed study of ceramic reinforcement of different size ranges in the matrix of LM13 alloy on the friction and wear behavior has been carried out. For this purpose, LM13/Zr composite containing 10 wt% zircon sand particles of different size ranges using stir casting process has been developed. Zircon sand particles were incorporated in two ways: firstly as single size reinforcement and secondly dual size reinforcement. Durability of the composites was tested by finding the wear rate of the composite against the steel disk by pin-on-disk method. Addition of zircon sand particles in the LM13 alloy improves the hardness of the composite as well as wear resistance. Wear rate of the developed composites was tested under different test conditions by varying the applied load and ambient temperatures. Wear rate of the composite changes significantly at different ambient temperatures. SEM analysis of the worn surfaces was done to know the operative wear mechanism.  相似文献   

18.
19.
Tribological experiments on phenol–formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a steady-state value is reached. Although the steady-state values of the coefficient of friction are very close and ultralow, the wear rate of the PTFE composite liner at a long sliding distance (1,000 m) is reduced when the steel ball is coated with the TiC/a-C:H coating. This behavior is mainly attributed to the smoother surface after long sliding and the improved wear resistance of TiC/a-C:H coating. PTFE transfer films are evident on the surfaces of the hard counterparts. The average thickness of the transfer film on TiC/a-C:H-coated surfaces is about 3.8 nm. On the surface of uncoated steel ball, a continuous but non-uniform transfer film of around 13.9 nm average thickness was found.  相似文献   

20.
ABSTRACT

Though the premature failures of wind turbine gearboxes are often attributed to bearing fatigue from overloading, there is compelling evidence that wear from underloading is a significant contributor. Here we attempt to gain insight into the relative contributions of over- and underloading by assessing planet bearing reaction forces from the Gearbox Reliability Collaborative (GRC) standard gearbox within a typical utility-scale wind turbine under realistic conditions. The results demonstrate that non-torque load sharing by the planetary stage increases and decreases planet bearing reaction forces at different locations within each rotor cycle regardless of wind speed. Planet bearing reaction forces exceeded the fatigue limit at wind speeds above 12 m/s and fell below the minimum load rating at wind speeds below 7 m/s. Based on analyses of published wind spectra from 10 U.S. sites, the expected fatigue life of the planet bearings ranged from 42 to 529 years even after accounting for non-torque load sharing. At the same 10 sites, planet bearings were underloaded (below 2% of the dynamic load rating) once per rotor cycle 40–70% of the time. Underloaded bearings are susceptible to surface damage when suddenly exposed to common transient events, such as yaw, wind gusts, braking, and grid faults. The resulting surface damage can initiate premature failure via wear (e.g., micropitting) or by reducing bearing fatigue life. The results suggest that carrier bearing clearance, non-torque load sharing, and planet bearing underloading are significant contributors to the premature failures of wind turbine planet bearings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号