首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this experimental study, the effects of major laser process control parameters, such as the laser power, beam scanning speed and assisting gas flow rate, on cut surface integrity defined by the kerf width, taper percentage, and the extent of heat affected zone (HAZ) were investigated. Response surface methodology (RSM) along with central composite design (CCD) of the experiment was used to optimize the process parameters to get better-cut surface quality. The optimum values of process parameters corresponding to cut surface with minimum defects are laser power 260?W, cutting speed 4500?mm per min, and assistance gas flow rate 14.23?l/min and the corresponding kerf width, taper percentage, and the width of HAZ are found to be 163.7?µm, 5.75%, and 573.28?µm. The confirmation experiments have been conducted that provide favorable results with an error of 2.70%, 1.87%, and 0.36%, for kerf width, taper percentage, and width of HAZ, respectively.  相似文献   

2.
Aluminum metal matrix composites (AMMCs) explicitly show better physical and mechanical properties as compared to aluminum alloys and results in a more preferred material for a wide range of applications. The addition of reinforcements embargo AMMCs employment to industry requirements by increasing order of machining complexity. However, it can be machined with a high order of surface integrity by nonconventional approaches like abrasive water jet machining. Hybrid aluminum alloy composites were reinforced by B4C (5–15?vol%) and solid lubricant hBN (15?vol%) particles and fabricated using a liquid metallurgy route. This research article deals with the experimental investigation on the effect of process parameters such as mesh size, abrasive flow rate, water pressure and work traverse speed of abrasive water jet machining on hybrid AA6061-B4C-hBN composites. Water jet pressure and traverse speed have been proved to be the most significant parameters which influenced the responses like kerf taper angle and surface roughness. Increase in reinforcement particles affects both the kerf taper angle and surface roughness. SEM images of the machined surface show that cutting wear mechanism was largely operating in material removal.  相似文献   

3.
For machining of composites, abrasive water jet machining is widely employed. For assembly of the machine tool structure, production of slots is essential. In this paper, abrasive water jet machining of composite laminates was experimentally investigated for various cutting parameters in terms of average surface roughness (Ra) and kerf taper (Kt). By generating a response surface model, the experimental values obtained for quality characteristics (Ra and Kt) were empirically related to cutting parameters. The effects of cutting parameters on quality characteristics were analyzed by utilizing empirical models and also optimized within the tested range based on desirability approach. The optimum parameter levels were also validated by confirmation test. From this investigation, it is evident that for obtaining a minimum kerf taper, traverse speed, water pressure, and abrasive mass flow rate are significant parameters and for obtaining less surface roughness traverse speed is the significant parameter.  相似文献   

4.
LASER CUTTING     
Laser cutting substitutes more and more conventional processes due to its technical and economic advantages. This paper gives an introduction to that modern technology. In the first part. the layout and the function of a laser cutting facility is explained, and the principal possibilities for the relative movement between laser beam and workpiece are mentioned. In the second part, the mechanism of laser cutting with its material removal by melting and evaporation is described. Most recent analytic results are mentioned and even dynamic effects as they lead to the formation of periodic striations on the cut are included. In the third part, the influence of the various process parameters, such as beam power. reactive gas flow, material properties and dimensions on kerf width, cutting speed, maximum thickness to be cut, and cut quality are discussed in detail and illustrated with some simple expressions. Laser cutting is also compared to conventional cutting processes such as mechanical or thermal cutting. A final section deals with the technical limits for cutting speed, maximum thickness that can be cut and cut quality.  相似文献   

5.
This paper describes how optimization studies were carried out on an abrasive water jet (AWJ) cutting process with multiresponse characteristics based on Multi Criteria Decision Making Methodology (MCDM) using the Technique for Order Preference by Similarity Ideal Solution (TOPSIS) approach. The process parameters water jet pressure, traverse rate, abrasive flow rate, and standoff distance are optimized with multiresponse characteristics, including the depth of penetration (DOP), cutting rate (CR), surface roughness (Ra), taper cut ratio (TCR), and top kerf width (TKW). The optimized results obtained from this approach indicate that higher DOP and CR and lower Ra, TCR, and TKW were achieved with combinations of the AWJ cutting process parameters, such as water jet pressure of 300 MPa, traverse rate of 120 mm/min, abrasive flow rate of 360 g/min, and standoff distance of 1 mm. The experimental results indicate that the multiresponse characteristics of the AA5083-H32 unit used during the AWJ cutting process can be enhanced through the TOPSIS method. Analysis of variance was carried out to determine the significant factors for the AWJ cutting process.  相似文献   

6.
The present work involves investigation of the abrasive aqua jet (AAJ) machining of hybrid metal matrix which consists of Al 6063 reinforced with boron carbide (B4C) and zirconium silicate (ZrSiO4) in the form of particulates in the proportion of 5% B4C and 5% ZrSiO4. The Response surface method using a central composite design was adopted for conducting experiments by changing the aqua jet pressure, abrasive flow rate, and traverse rate. The results were taken with different types of abrasives of various mesh sizes in this study, which were analyzed using response surface graphs. The striation effect on the bottom-machined surfaces was also examined using the striation length and its frequency. Surface topography and morphology were analyzed on the AAJ-machined composite kerf wall cut surfaces. The machined surface exhibited the inherent characteristics of AAJ which included wear tracks, and contamination generated in the metal surface. The experimental results revealed that higher abrasive flow rate (400 g/min), lower traverse rate (30 mm/min), and higher aqua jet pressure (300 MPa), the production of a higher material removal rate, lower surface roughness and kerf taper angle.  相似文献   

7.
In the present experimental study, abrasive water jet (AWJ) cutting tests were conducted on D2 steel by different jet impingement angles and abrasive mesh sizes. The experimental data was statistically analyzed using the simos–grey relational method and ANOVA test. In addition, the outcome of influencing cutting parameters, namely jet pressure, jet impingement angle, and abrasive mesh size on the different response parameters, namely, the jet penetration, material removal rate, taper ratio, roughness, and topography, were studied. Micro-hardness test and surface morphology analysis were employed to examine the D2 cut surfaces at different AWJ cutting conditions. The chemical element study was performed to determine the abrasive particle contamination in the AWJ kerf wall cut surfaces. The ANOVA test result indicated the jet pressure and jet impingement angle as the influencing process parameters affecting the various performance characteristics of AWJ cutting. The overall AWJ cutting performance of the D2 steel has been improved through proper identification of the optimal process parameter settings, namely jet pressure 225?MPa, abrasive mesh size #100, and jet impingement angle 70° by the simos–grey relational analysis.  相似文献   

8.
This paper presents a new approach, based on the principles of fuzzy logic and Genetic Algorithm (GA) for selection of optimal process parameters in Abrasive Water Jet (AWJ) cutting of granite to any predetermined depth, using multi-criteria optimization technique. The proposed approach suggests the best combination of process parameters such as water jet pressure, jet traverse rate and abrasive flow rate for cutting granite material to any predetermined depth. GA, in combination with the model built based on fuzzy approach, generates several sets of process parameters satisfying the objective of achieving the desired depth of cut. These sets of parameters are subjected to multi-criteria optimization procedure which suggests a set of process parameters that can minimize the cost of production by increasing the rate of production and reducing the consumption of abrasives, maintaining the desired depth of cut within the specified limits. The proposed approach is validated with suitable experiments conducted on Paradiso granite.  相似文献   

9.
This paper deals with the machinability of nickel-based superalloys using abrasive water jet machining process. The machining studies were carried out with three different parameters such as water jet pressure, traverse speed of jet nozzle, and standoff distance at three different levels. The performances of the process parameters are evaluated by measuring difference in kerf width, kerf wall inclination, and material removal rate (MRR). Further, the surface morphology and material removal mechanisms are analyzed through scanning electron microscope (SEM) images. It is found that water jet pressure is the most influencing factor related to surface morphology and surface quality.  相似文献   

10.
The aim of this work is to relate the cutting edge quality parameters (responses) namely: upper kerf, lower kerf, ratio of the upper kerf to lower kerf and cut edge roughness to the process parameters considered in this research and to find out the optimal cutting conditions. The process factors implemented in this research are: laser power, cutting speed and focal point position. Design of experiment (DoE) was used by implementing Box-Behnken design to achieve better cut qualities within existing resources. Mathematical models were developed to establish the relationship between the process parameters and the edge quality parameters. Also, the effects of process parameters on each response were determine. Then, a numerical optimization was performed to find out the optimal process setting at which the quality features are at their desired values. The effect of each factor on the responses was established and the optimal cutting conditions were found.  相似文献   

11.
A numerical control 3-D processing system was constituted for dual swirling plasma arc cutting. The effect of cutting energy parameters and operating gases on kerf characteristics was then investigated experimentally, so as to provide a reference for appropriately selecting process parameters to improve cut quality. It is shown that kerf widths reduce, and the bevel angle and the straightness increase with an increase of cutting speed and a decrease of arc current. Moreover, a smaller bevel angle, together with greater straightness and more dross, exhibits on the low speed side of the cut. As the oxygen content of the operating gas decreases, kerf widths decrease and the dross increases, while the bevel angle varies slightly on the high speed side of the cut. For the pure oxygen and pure air processes, the bevel angle on the low speed side and the straightness of cut surface are the smallest, but the pure oxygen cut surface is the roughest due to the occurrence of a saw-like kerf.  相似文献   

12.
The material removal process of refractory ceramics cut by abrasive water jets was investigated. In particular, bauxite, sintered magnesia, and magnesia chromite, were cut in a wide range of pump pressures up to 350 MPa. The process parameters, such as pump pressure, traverse rate, abrasive flow rate, and abrasive type, were changed during the experiments in order to find an optimum parameter combination. For all experiments, the depth of cut, cut geometry, the surface structure of the generated cuts, and the material removal rates were measured and analysed. Based on these measurements the specific energies were estimated. Using scanning electron microscopy, it was found that the material removal mechanism changed with the depth of cut. In the upper region, the main material removal mechanism was the simultaneous cutting of matrix and inclusion grains (transgranular). In the lower range of the cut, the removal process was characterized by the removal of the binding matrix followed by washing of the inclusion grains (intergranular).  相似文献   

13.
Polymer matrix composite materials have been increasingly used in aerospace, defense, automotive and marine industries. In these fields, nontraditional machining method of abrasive water jet (AWJ) has been used significantly in order to form polymer matrix components. In this study, glass fiber reinforced vinyl ester composite plates have been investigated under various AWJ cutting parameters by using the Taguchi experimental design in detail. For Taguchi experimental design, experimental parameters of standoff distance, abrasive mass flow rate, traverse speed, pressure and material thickness were determined at three levels. Top kerf width and the surface roughness were investigated in order to understand the cutting performance. Finally, linear regression models were conducted and all performance parameters were examined using analysis of variance (ANOVA) and main effects plots. According to the overall test results, standoff distance was determined as the most effective one. The optimal parameter levels were obtained by the ‘main effects plots’, and finally, the predictive modeling was validated by performing the optimal combination of parameter levels.  相似文献   

14.
The size of reinforced particles notably affects the electro-discharge machining (EDM) of metal matrix composites (MMCs). This paper explores the mechanism of wire EDM of MMCs with different sizes of reinforced particles as well as the corresponding unreinforced matrix material. The mechanisms of material removal, surface generation, and taper kerf formation were investigated. This study shows that the particles’ ability to protect matrix materials from the intense heat of electric arc controls the material removal rate, surface generation, and taper of kerf. The low melting point matrix material is removed very easily, but the heat resistance reinforced particles delay the removal of material and facilitate the transfer of the workpiece material to wire electrode and vice versa. Thus, the material stays longer in touch with intense heat and affects the surface generation, wire electrode wear, and width of the kerf.  相似文献   

15.
The filler materials are reinforced along with natural fibers in the composite to improve the quality and property of the component materials based on the requirements and its applications. In this paper, hybrid natural fiber composites were developed with and without filler materials as reinforcement. The developed hybrid natural fiber composites are machined using abrasive water jet cutting process with three different cutting parameters. The influences of cutting parameters are evaluated with respect to the kerf wall inclination, material removal rate, and surface roughness. The surface morphology was also studied to infer the basic mechanism involved during composite machining. The hybrid fiber composite with filler has proved that it can produce good engineering component without delamination and fiber pullouts during machining.  相似文献   

16.
The use of cladded bimaterial composites has grown in the recent past as they offer a combination of properties at low cost. But the heterogeneity which is the inherent attribute of these composites makes it challenging to accurately cut via conventional means. Therefore, thermal cutting is commonly employed for their cutting which not only produce poor cut quality and deeper heat affected zones but also demand subsequent finishing operations. Wire electric discharge cutting (WEDM) is a proficient alternate but low material removal (MRR) and widen kerf slot (KW) due to sideways sparking limit its application. Moreover, both layers of material have different thermoelectric properties and are subjected to simultaneous cutting by a single moving wire electrode which lead to produce different spark strength against both layers. In this regard, the present study aims to investigate the cutting potential of WEDM for cladded bimaterial with a prior focus on both the aforesaid issues, i.e. MRR and KW. Considering the thermoelectric nature of the WEDM, workpiece-related parameters like orientation of work surface and layer thickness of each layer are taken as control variables in addition to the WEDM process parameters. Experimental results are thoroughly analyzed using statistical and SEM analysis.  相似文献   

17.
We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime. The thickness of melt film inside the kerf is estimated using mass balance and the shear force acting on the cutting front assuming melt flow profile as linear. The dependence of melt film thickness on gas pressure, cutting velocity and work piece thickness is estimated and compared with experimental results.  相似文献   

18.
ABSTRACT

An experimental investigation is presented to improve the cutting quality in abrasive water jet (AWJ) cutting of marble by an addition of polyacrylamide (PAM). Considering experimental data, the kerf widths have a remarkable change when the PAM concentration approaches to 400 ppm. The deviation between top and bottom kerf width reaches the minimal value when PAM concentration is equal to about 600 ppm. In addition, the surface topography analyses illustrate that an addition of PAM can broaden the cutting wear zone and make the cutting quality better. Furthermore, the effects of PAM on the surface roughness are assessed by a profilometer. It is eventually found that the surface roughness decreases initially and then increases greatly with the increase of the depth of cut. Additionally, the minimum surface roughness occurs when the PAM concentration is 600 ppm, which agrees well with the experimental result of kerf width. An increasing stand-off distance or traverse speed produces a higher surface roughness.  相似文献   

19.
This paper presents a study on the effect of abrasive water jet machining (AWJM) process parameters on surface roughness (R a) and kerf taper ratio (T R) of aramid fibre reinforced plastics (AFRP) composite. Taguchi’s design of experiment was used as the experimental approach. Through analysis of variance (ANOVA), it was found that the traverse rate was considered to be the most significant factor in both R a and T R quality criteria. R a and T R were reduced as increasing the hydraulic pressure and reducing the standoff distance and traverse rate. However, there was no clear pattern for abrasive mass flow rate on both R a and T R. Therefore, it was confirmed that increasing the kinetic energy of water jet may produce a better quality of cuts. Mathematical models were also developed using multiple linear regression analysis to predict the performance of R a and T R in terms of AWJM process parameters. Considerably, the models are useful in predicting R a and T R in AWJM of AFRP laminate as shown in present study.  相似文献   

20.
Abrasive waterjet (AWJ) cutting is an emerging technology which enables the shaping of practically all engineering materials. However, AWJ cutting may cause roughness and waviness on the cut surface. This significantly affects the dimensional accuracy of the machined part and the quality of surface finish. In this study, the surface roughness of three granites is experimentally investigated for varying process parameters in abrasive waterjet. The philosophy of the Taguchi design is followed in the experimental study. Effects of the control (process) factors on the surface roughness are presented in terms of the mean of means responses. Additionally, the data obtained are evaluated statistically using the analysis of variance (ANOVA) to determine significant process parameters affecting the surface roughness. Furthermore, effects of the material properties on the surface roughness are assessed. It was statistically found that the water pressure and the abrasive flow rate are the most significant factors influencing the surface roughness of granites. Additionally, a consistent relationship between the material grain size and surface roughness of the granites was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号