首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2022,105(5):3703-3715
Kefir is a fermented dairy product with well recognized probiotic properties. Recently, consumer interest in fermented products with probiotic microorganisms has increased due to the accumulating evidence of the effects of kefir microorganisms on the modulation of gut microbiota and their antimicrobial activity. Although the health properties of kefir have been reviewed in other works, the present review addresses the antimicrobial effects of kefir microbiota and associated compounds. The antimicrobial activity of kefir microorganisms could derive from different mechanisms. The microorganisms' capacity to adhere to the intestinal epithelium, preventing the adhesion of pathogens, and their immunomodulation properties are among the mechanisms suggested. Bacteria and yeast isolated from kefir have been shown to have in vivo and in vitro antimicrobial activity against enteropathogenic bacteria and spoilage fungi. However, most reports have focused their approach on single-strain antimicrobial properties; evaluation of antimicrobial activity of cocultures of kefir microbiota and their potential mechanisms of action has been neglected. Kefir microbiota and associated compounds have shown promising antimicrobial effects; however, more research needs to be done to discern the mechanisms of action.  相似文献   

2.
Kefir is a traditional dairy product with multiple probiotic characteristics derived from its associated microorganisms, including more than 50 species of lactic acid bacteria and yeast. For centuries, many people have produced kefir for human consumption; its consumption and potential role as a probiotic supplement in companion animals have never been tested. The present study explored the potential application of kefir as a probiotic supplement for dogs. Kefir was orally administered to healthy adult dogs (n = 6) for 2 wk. On d 0 and 14 (before and after kefir consumption, respectively), gut microbiota was analyzed comprehensively using quantitative PCR and 16S rDNA amplicon-based community analysis using fresh fecal samples. The 16S rDNA amplicon-based community analysis showed that the relative abundance of the phylum Fusobacteria was significantly decreased after kefir consumption. Furthermore, the relative abundance of the families Prevotellaceae, Selenomonadaceae, and Sutterellaceae increased significantly, whereas that of the families Clostridiaceae, Fusobacteriaceae, and Ruminococcaceae decreased significantly. The quantitative PCR assay showed that kefir consumption significantly increased the population of lactic acid bacteria and the lactic acid bacteria:Enterobacteriaceae ratio and significantly decreased the Firmicutes:Bacteroidetes ratio. In summary, 2-wk kefir administration successfully modified the gut microbiota without causing any clinically evident adverse effects. Therefore, kefir could be further developed as a novel probiotic food supplement for dogs to improve the quality of life of dogs.  相似文献   

3.
近年来,随着人们的生活习惯向高脂膳食转变,高脂膳食诱发的食源性肥胖、心血管疾病、糖尿病等相关 慢性代谢疾病已经成为困扰全球的公共卫生问题。越来越多的研究表明,肠道微生态和高脂膳食诱发的代谢紊乱关 系密切。受膳食、遗传背景和生活方式等因素的影响,肠道微生态的组成存在着很大的个体差异。膳食不仅仅为宿 主提供营养物质,也是肠道微生物营养的来源,能影响肠道微生态的组成和功能。宿主的能量代谢、肠道通透性的 保持以及一些炎症反应和免疫反应均与肠道微生态的改变相关。本文综述了高脂膳食、肠道微生态和宿主健康之间 的相互影响及其可能的作用机理。虽然目前的研究结果还无法证实肠道微生态与高脂膳食诱发的相关慢性代谢疾病 是否存在因果关系,但肠道微生态与宿主健康之间的相互影响为肥胖及其相关代谢疾病的防治提供了新思路。  相似文献   

4.
食品防腐剂具有强且广谱的抑菌性,在食品工业领域被广泛应用。食品防腐剂经膳食摄入后对肠道菌群和宿主健康的影响虽已有报道,但仍缺乏系统的总结。本文综述近年来国内外有关食品防腐剂与肠道菌群的最新研究成果,发现食品防腐剂通过改变肠道菌群多样性、调节肠道条件致病菌和有益菌丰度,进而影响机体脂代谢、免疫及肠道炎症;此外,展望了食品防腐剂未来的研究发展趋势。本文旨在引起广大科研工作者和读者对“食品防腐剂-肠道菌群-宿主健康”关系链的关注和重视,为目前已有的食品防腐剂的安全评价体系提供新视角、新思路,对维持人体健康具有一定的指导意义。  相似文献   

5.
Dietary fibers (DFs) regulate host health through various mechanisms related to their dietary sources, specific physicochemical structures, fermentability, and physiological properties in the gut. Considering the numerous types and sources of DFs and their different physicochemical and physiological properties, it is challenging yet important to establish the key mechanisms for the beneficial health effects of DFs. In this review, the types and structures of DFs from different fruits and vegetables were summarized and the effects of different processing methods on DF properties were discussed. Moreover, the impacts of DFs on gut microbial ecology, host physiology, and health were described. Understanding the complex interaction between different DFs and gut microbiota is vital for personalized nutrition. It is also important to comprehend factors influencing gut microbiota and strategies to regulate the microbiota, thereby augmenting beneficial health responses. The exploration of molecular mechanism linking DFs, gut microbiota, and host physiology may allow for the identification of effective targets to fight against major chronic diseases.  相似文献   

6.
Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.  相似文献   

7.
Abstract

The human gut contains trillions of microorganisms with a great diversity that are associated with various health benefits. Recent studies have reported an increasing correlation between diet, gut microbiota, and human health, indicating rapid development in the field of gut health. Diet is an important factor that determines the gut microbiota composition. The gut comprises great diversities of microbes involved in immune modulation and other functions. In particular, Akkermansia muciniphila is a mucin-degrading bacterium is believed to have several health benefits in humans. Several studies have evaluated the prebiotic effects of various dietary components on A. muciniphila and their association with various ailments, such as diabetes mellitus, atherosclerosis, and cancer. Hence, this review aims to provide a plausible mechanistic basis for the interactions between dietary components, and A. muciniphila and for the therapeutic benefits of this interaction on various illnesses.  相似文献   

8.
通过体外肠道菌群厌氧发酵技术研究酵母甘露糖蛋白(mannoprotein,MP)的益生活性。结果表明,MP可调节肠道菌群结构,在门水平增加了拟杆菌门(Bacteroidetes)的相对丰度,降低了厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)的相对丰度,降低了Firmicutes/Bacteroidetes比值。MP显著提高了发酵液中短链脂肪酸尤其是乙酸和丙酸的含量。MP与菊粉具有相似的益生菌活性,菊粉可促进双歧杆菌属(Bifidobacterium)的增殖,而MP可选择性促进拟杆菌属(Bacteroides)、韦荣球菌属(Veillonella)、Clostridium_sensu_srticto、布劳特氏菌属(Blautia)、粪杆菌属(Faecalibacterium)、纺锤链杆属(Fusicatenibacter)和产丁酸球菌属(Butyricicoccus)的生长。脂多糖诱导RAW 264.7巨噬细胞模型结果表明MP对炎症没有显著调节作用(P>0.05),而其发酵液具有显著抗炎活性,且其活性与菊粉组相似,均优于空白组。因此,MP有望成为通过调...  相似文献   

9.
膳食与宿主的代谢、免疫系统密切相关。大量报道表明膳食显著影响肠道菌群的组成和功能,进一步影响宿主生理。基于肠道菌群膳食干预的健康调控策略已成为研究热点。本文作者综述了近年来国内外高水平团队的相关研究成果,介绍了膳食模式、膳食成分、功能膳食补充剂对肠道微生物及人体健康研究的相互关系,为相关膳食干预策略的开发提供一些借鉴和参考。  相似文献   

10.
益生乳酸菌与肠道菌群稳态   总被引:1,自引:0,他引:1       下载免费PDF全文
肠道是个复杂的微生态系统,不仅包含宿主细胞和各种营养物质,还包含数以万计的微生物。这些肠道微生物与宿主健康息息相关,对宿主营养、代谢、生理和免疫均有影响,肠道菌群发生紊乱还会引起各种疾病。大量临床试验表明,益生乳酸菌可通过调节宿主肠道菌群稳态治疗或缓解多种疾病。本文作者描述了失衡指数(DI)、微生物平衡指数(MBI)和微生物失衡指数(MDI)这3种量化肠道菌群稳态的计算方法及其应用,阐述了益生乳酸菌对肥胖和健康宿主肠道菌群稳态的影响,指出益生乳酸菌可能通过与肠道中病原菌竞争结合位点或分泌物质抑制病原菌,分泌代谢物为肠道中有益共生菌提供适宜生长繁殖的环境和制造“假想敌”刺激宿主免疫系统应答等方式维持宿主肠道菌群稳态,并讨论了维持宿主肠道菌群稳态的重要性。同时还综述了益生乳酸菌研究现状,指出益生乳酸菌的研究要做到个性化,不仅要考虑研究人群个体差异,还要考虑菌株之间的差异。  相似文献   

11.
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.  相似文献   

12.
目前食品组分与肠道菌群的相互作用及其对健康的影响已成为膳食与健康领域的研究热点。存在于动物体内的肠道菌群对大豆活性组分的分解代谢、转化吸收有着重要作用,大豆活性组分在体内肠道菌群作用下发生生物转化,导致其结构改变,从而形成新的活性成分,进而影响人体健康。同时,大豆活性组分的肠道菌群代谢产物又能够调节肠道菌群结构、保护肠黏膜屏障、维护肠道微生态平衡。本文对大豆活性组分如何在菌群作用下进行有效生物转化、肠道菌群在外源组分的扰动下如何进行菌群结构和丰度调整以及大豆组分的菌群代谢产物对人的健康影响等方面进行了综述,以期为深入研究大豆活性成分对人体健康作用的机理提供参考。  相似文献   

13.
The functional food market, including products formulated to maintain a “healthy” gut microbiota, i.e. probiotics and prebiotics, has increased enormously since the end of the last century. In order to favor the competitiveness of this sector, as well as to increase our knowledge of the mechanisms of action upon human health, new probiotic strains and prebiotic substrates are being studied. This review discusses the use of exopolysaccharides (EPS), both homopolysaccharides (HoPS) and heteropolysaccharides (HePS), synthesized by lactic acid bacteria and bifidobacteria as potential prebiotics. These extracellular carbohydrate polymers synthesized by some gut inhabitants seem to be resistant to gastrointestinal digestion; these are susceptible as well to biodegradability by the intestinal microbiota depending on both the physicochemical characteristics of EPS and the pool of glycolytic enzymes harbored by microbiota. Therefore, although the chemical composition of these HoPS and HePS is different, both can be fermentable substrates by intestinal inhabitants and good candidates as prebiotic substrates. However, there are limitations for their use as additives in the food industry due to, on the one hand, their low production yield and, on the other hand, a lack of clinical studies demonstrating the functionality of these biopolymers.  相似文献   

14.
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic‐like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic‐like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short‐chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic‐like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.  相似文献   

15.
肠道菌群是机体的重要组成部分,肠道菌群能在一定程度上影响宿主的营养代谢和健康。肠道菌群的组成与功能受宿主生理状态、遗传、饮食习惯、年龄和环境等多重因素的影响。其中,膳食是影响肠道菌群结构和功能最为重要且较为迅速的因素。作为日常生活中常见的食物资源,杂粮、杂豆和果蔬等食物含有的膳食纤维和多酚等物质已经被证明具有调节肠道菌群的作用。肠道菌群能够发酵膳食纤维,代谢后释放维生素以及短链脂肪酸等代谢产物,并选择性地促进一些肠道有益菌的增殖,进而在一定程度上促进宿主健康。此外,大部分酚类物质也在肠道中被肠道菌群代谢分解后进一步提高酚类物质的生物利用率,从而改善宿主生理状态。本文围绕日常生活中常见的食物资源如杂粮杂豆以及水果蔬菜等对肠道菌群的调节作用进行综述,展望以肠道菌群为靶点的代谢性疾病预防与治疗或膳食干预的前景。  相似文献   

16.
Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota—one of the key aspects of gut health—is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host–microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health.  相似文献   

17.
Consumption of dietary ellagitannins (ETs) has been associated with different health benefits. Nonetheless, ETs are not bioavailable as such and are metabolized in vivo. They are partially converted into ellagic acid (EA) in the upper gastrointestinal (GI) tract, but this first metabolite is also poorly bioavailable. In the lower GI tract, EA and residual ETs are metabolized by gut microbiota to produce urolithins, which, together with their conjugate relatives, persist at relatively high concentrations in plasma and urine for days after ingestion of dietary ETs. Thus, ETs and EA may exert local health benefits on the GI tract but systemic health benefits are more likely to result from urolithins. Cellular models suggest that, at physiological concentration, urolithins are active against chronic degenerative diseases. Health benefits have been proven in animal models and during clinical studies. Even so, the crucial involvement of gut microbiota in ET bioconversion induces important variability of physiological response among humans, giving rise to the concept of high and low urolithin producers. This variability among consumers in obtaining potential health benefits from dietary ETs raises new challenges for the functional food industry. Different research perspectives are discussed to tackle this significant issue for nutritionists, food technologists, and consumers.  相似文献   

18.
PROBDEMO, a multi-centre European research project, began in 1996 with the aim of demonstrating that probiotic micro-organisms can positively effect human health in rigorously conducted human clinical studies. These studies, now completed, have shown that some probiotics can influence the composition of the intestinal microbiota and modulate the host immune system with measurable benefits to health, including the control of atopic eczema in infants with food allergy. Considerable promise was also demonstrated for the use of selected probiotics in controlling inflammatory bowel disease, and infections in children and the elderly. The scientific approaches to selecting and evaluating probiotics that were demonstrated in the PROBDEMO project provide a model for food manufacturers to move further towards demonstrating efficacy for their probiotic products.  相似文献   

19.
Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and β-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.  相似文献   

20.
利用高脂金黄地鼠模型研究开菲尔对肠道菌群的调节作用。体质量、肝脏质量、附睾脂肪质量、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)测定结果表明,开菲尔能够有效控制高脂饲料引起的体质量、附睾脂肪质量增加以及LDL-C/HDL-C比值的升高(开菲尔实验组体质量、附睾脂肪质量、LDL-C/HDL-C比值分别为149.8 g、4.0 g、0.7,显著低于高脂饲料对照组的172.1 g、5.5 g、1.1)。高通量测序分析结果显示,开菲尔能够显著下调拟杆菌门、脱铁杆菌门、变形菌门和TM7菌门组成比例和上调厚壁菌门、柔膜菌门和疣微菌门比例;能够上调Akkermansia muciniphila的组成比例,并下调Alistipes indistinctus和Mucispirillum schaedleri的组成比例。因此,推断开菲尔能够调节高脂饲料引起的肠道菌群失调,抑制体质量增加和降低血脂指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号