首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grafting of SnCl4 on the Fe3O4@SiO2 nanoparticles afforded Fe3O4@SiO2-SnCl4 as a novel inorganic heterogenous catalyst, which was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE-SEM), and transmission electron microscopy (TEM). In this research, we report a convenient and efficient direct protocol for the preparation of xanthene derivatives via condensation of β-naphthol, dimedone, or mixture of β-naphthol and dimedone with various aromatic aldehydes in the presence of the catalytic amount of Fe3O4@SiO2-SnCl4 under ultrasonic irradiation. This procedure has a lot of advantages such as: very easy reaction conditions, absence of any tedious workup, or purification, and much milder method. The corresponding products have been obtained in excellent yields, high purity, and short reaction times.  相似文献   

2.
To facilitate the recovery of Pb/SiO2 catalyst, magnetic Pb/Fe3O4/SiO2 samples were prepared separately by emulsification, sol-gel and incipient impregnation methods. The catalyst samples were characterized by means of X-ray diffraction and N2 adsorption-desorption, and their catalytic activity was investigated in the reaction for synthesizing propylene carbonate from urea and 1,2-propylene glycol. When the gelatin was applied in the preparation of Fe3O4 at 60°C and the pH value was controlled at 4 in the preparation of Fe3O4/SiO2, the Pb/Fe3O4/SiO2 sample shows good catalytic activity and magnetism. Under the reaction conditions of a reaction temperature of 180°C, reaction time of 2 h, catalyst percentage of 1.7 wt-% and a molar ratio of urea to PG of 1:4, the yield of propylene carbonate attained was 87.7%.  相似文献   

3.
Chaoquan Hu   《Catalysis communications》2009,10(15):2008-2012
Ultrafine Cu0.1Ce0.5Zr0.4O2−δ catalyst operated in a fluidized bed reactor was found to be very effective for complete oxidation of dilute benzene in air. The complete conversion of benzene could be achieved at reaction temperature as low as 220 °C. The mechanism of benzene oxidation over the Cu0.1Ce0.5Zr0.4O2−δ catalyst was investigated by conducting pulse reaction of pure benzene in the absence of O2 over the catalyst and the results indicated the involvement of lattice oxygen from the catalyst in benzene oxidation.  相似文献   

4.
A series of Ru-promoted CrO x /Al2O3 as catalysts for the low-temperature oxidative decomposition of trichloroethylene (TCE) were characterized and evaluated in comparison with an unpromoted CrO x /Al2O3 catalyst. Catalyst characterization was conducted by surface area measurement, X-ray diffraction and X-ray photoelectron spectroscopy. Catalyst performance in the TCE decomposition reaction was evaluated with respect to the initial catalytic activity, the rate of catalyst deactivation, and the product concentrations of CO and Cl2 under dry or wet air conditions. The presence of a small amount of Ru, as much as 0.4 wt% in a CrO x /Al2O3 catalyst, brought about several beneficial effects on the catalytic reaction performance. As compared with the unpromoted CrO x /Al2O3, this Ru-promoted CrO x /Al2O3 catalyst showed enhanced catalytic activity (249 versus 264 °C in terms of temperature at which 50% of TCE conversion occurred), a reduced concentration of CO (180 versus 325 ppm) in the product, and a decreased propensity to deactivation. Performance improvements of the Ru-promoted CrO x /Al2O3 catalyst were thought to originate from its enhanced oxidation activity due to the coexisting highly-dispersed Ru oxides rendering less active Cr(III) to more active Cr(VI), and facilitating the process of supplying activated oxygen for the reaction system.  相似文献   

5.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

6.
Two kinds of HZSM-5 zeolite (SiO2/Al2O3 = 50,300) were introduced into the STD (syngas-to-DME) reaction and the double-function catalysts containing CuO/ZnO/Al2O3 and HZSM-5 were investigated by activity evaluation and NH3-TPD. It was found that the acidity of HZSM-5 played a critical role in the performance of STD catalyst, and an appropriate acidic amount was required to obtain the best activity of STD catalyst; more and less acidic amount were both unfavorable for DME yield.  相似文献   

7.
Steam reforming of commercially available LPG using Ru/Al2O3 and Ni/Al2O3 catalysts has been studied at temperatures between 573 and 773 K. Ru/Al2O3 catalyst showed higher rates of reaction and lower activation energies of the three main components of LPG, compared with Ni/Al2O3. However, Ni/Al2O3 catalyst showed a better H2:CH4 selectivity. The activation energy of n-butane was the lowest over Ru/Al2O3, whereas over Ni/Al2O3, propane had the lowest activation energy. The activation energy of i-butane was always the highest over both catalysts, which suggests that both catalysts performed better with unbranched molecules. A slight increase in activation energy was observed, when each component of the LPG mixture was studied separately as a pure gas, compared with being mixed in LPG. At a constant temperature of 773 K, hydrogen production yield and H2:CH4 selectivity were determined using Ru/Al2O3 at different steam:carbon (S:C) ratios and LPG flow rates. It was found that the yield and selectivity increased with the increase in S:C ratio and the decrease in the flow rate. The highest yield of 0.64 was achieved using S:C ratio of 6.5 and a LPG flow rate of 50 mL min?1. The work provides valuable information on steam reforming of pure components of LPG, compared with when they are in the mixture. The comparison is done using conventional steam reforming catalyst, Ni/Al2O3, and compared with Ru/Al2O3. The observed trends and variations in reaction rates, in pure and mixed gases, indicated that the mechanism of steam reforming of a hydrocarbon mixture depends on its composition.  相似文献   

8.
Catalytic partial oxidation of methane (POM) over the monolithic catalyst LaNiOx/CeO2–ZrO2/α-Al2O3 has been studied. Experiments were conducted with one channel of a monolith at a varied channel length, contact time (1–6 ms) and temperature using the diluted gas mixture (1% CH4 + 0.5% O2 in He). At increasing temperature and contact time, CO selectivity rises within the whole temperature range whereas the contact time dependence of H2/CO ratio varies with the temperature. These results support the POM reaction scheme including primary formation of CO and H2 followed by their oxidation in the presence of gas-phase O2. Steam and dry methane reforming reactions occur in the part of monolithic channel where oxygen is absent, thus increasing syngas yield.  相似文献   

9.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

10.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

11.
The effects of Mn/Na2WO4, Li, and CaO loading on the monoclinic Sm2O3 catalyst were investigated for the oxidative coupling of methane using O2 or N2O as an oxidant. The catalysts were prepared by wet impregnation method and characterized by XRD, BET, CO2-TPD, and XPS analysis. Impregnation of Mn/Na2WO4 on monoclinic Sm2O3 resulted in the formation of Sm2?xMnxO3 phase, decreasing the catalytic performance. Li impregnation increased the C2 selectivity but decreased the catalytic activity. The SmLiO2 formation increased the catalytic activity and selectivity. High amounts of CaO impregnation increased the C2 selectivity of monoclinic Sm2O3 without a loss in catalytic activity. 6Li/m-Sm2O3 were found unstable due to the Li loss from the catalyst. The 15CaO/m-Sm2O3 was quite stable and showed 8.2% ethylene yield with N2O use, much higher than that was obtained with the well-known 2Mn/5Na2WO4/SiO2 and 4Li/MgO catalysts. N2O was more selective than O2 as an oxidant and enhanced ethylene formation.  相似文献   

12.
XPS and IR spectroscopies were used to investigate the surface intermediates of dimethyl ether (DME) oxidation to formaldehyde over MoOx/Al2O3 catalyst. The reaction performances were tested by employing three typical reaction conditions, depending on the O2/DME ratio and the reaction temperature. When there was sufficient oxygen present in the reaction media, a terminal or bridged CH3O* species formed by DME dissociation was highly active and rapidly reacted with lattice oxygen to produce formaldehyde, leading to higher selectivity of HCHO. When oxygen was consumed completely or only DME was present in the reaction media, CH3O species bonded to more than two Mo atoms (μ-OCH3) and CHx (x=1–3) species attached to the Mo atoms were observed and the relative ratio of (μ-OCH3) /Mo–CHx was significantly dependent on the reduction degree of MoOx domains. The (μCH3O) species was related to the formation of CH3OH or COx, and the Mo–CHx species led to the formation of CH4.  相似文献   

13.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

14.
We investigated the selective oxidation of hydrogen sulfide to elemental sulfur and ammonium thiosulfate by using Bi4V2-xSbxO11-y catalysts. The catalysts were prepared by the calcination of a homogeneous mixture of Bi2O3, V2O5, and Sb2O3 obtained by ball-milling adequate amounts of the three oxides. The main phases detected by XRD analysis were Bi4V2O11, Bi1.33V2O6, BiSbO4 and BiVO4. They showed good H2S conversion with less than 2% of SO2 selectivity with a feed composition of H2S/O2/NH3/H2O/He=5/2.5/5/60/27.5 and GHSV=12,000 h-1 in the temperature ranges of 220–260 ‡C. The highest H2S conversion was obtained for x=0.2 in Bi4V2-xSbxO11-y catalyst. TPR/TPO results showed that this catalyst had the highest amount of oxygen consumption. XPS analysis before and after reaction confirmed the least reduction of vanadium oxide phase for this catalyst during the reaction. It means that the catalyst with x=0.2 had the highest reoxidation capacity among the Bi4V2-xSbxO11-y catalysts.  相似文献   

15.
The mechanistic cause of the promoting effect of CeO2 on the activity of SnO2/Al2O3 catalyst for the SCR of NO x by propene was investigated using X-ray photoelectron spectra (XPS) and in situ Fourier transform infrared (FT-IR) spectroscopy. FT-IR measurements have revealed that the role of CeO2 on the CeO2–SnO2/Al2O3 catalyst is to contribute to the formation of formate, acetate and nitrate species, and to promote the reaction between nitrates and hydrocarbon-derived species to form isocyanate (–NCO), which is a reaction intermediate for NO x reduction.  相似文献   

16.
Heterogeneous photocatalysis is a significant green technology for application in water purification. The application of Nb2O5 catalyst for the photodegradation of contaminants is few reported in the literature. Thus, the Nb2O5 catalyst was characterized by SEM, FTIR, surface area and charge surface density. This catalyst was applied to degrade indigo carmine dye, which was compared with degradation catalyzed by TiO2 and ZnO. Almost 100% of dye degradation occurred at 20, 45 and 90 min for TiO2, ZnO and Nb2O5, respectively. The effect of Nb2O5 catalyst concentration, pH and ionic strength (μ) was investigated. The Nb2O5 activity increased at 0.7 g/L and for higher catalyst concentrations the degradation was kept constant. Degradation of indigo carmine dye catalyzed by Nb2O5 was improved at pH < 4.0 and μ = 0.05 mol/L. TiO2, ZnO and Nb2O5 were recovered and re-applied in other nine reaction cycles. While TiO2 and ZnO have an abrupt loss of their catalytic activity, Nb2O5 maintained 85% of catalytic activity after 10 reaction cycles.  相似文献   

17.
Extensive homogeneous gasphase reactions were observed when decane was used as the hydrocarbon reductant for the selective reduction of NO x . The catalytic performance of a SnO2/CoO x /Al2O3 catalyst was found to be strongly dependent on the extent of the homogeneous reaction in the precatalytic volume. The effect of the homogeneous reaction on the catalytic performance also depended on whether SO2 was present in the feed. By filling the precatalytic volume with 25–35 mesh irregularly shaped quartz chips, gasphase reaction was suppressed significantly. This methodology was used to evaluate the inherent catalytic performance of SnO2/CoO x /Al2O3 and SnO2/Al2O3 catalysts with decane as a reductant. It was found that in the absence of SO2, SnO2/Al2O3 was a better catalyst than SnO2/CoO x /Al2O3, but in the presence of 30 ppm of SO2 the latter was a far better catalyst.  相似文献   

18.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

19.
The catalytic properties of (VO)2P2O7/α-Sb2O4 mixed oxides system for n-butane mild oxidation have been investigated on two mechanical mixtures (M1 and M2) of the same well crystallized (VO)2P2O7 (reference vanadyl pyrophosphate) with two different morphologies of α-Sb2O4.The M1 mixture of (VO)2P2O7 with α-Sb2O4 (1), prepared by oxidation of Sb2O3, leads to the oxidative dehydrogenation (ODH) of n-butane, whereas the M2 mixture of (VO)2P2O7 with a commercial α-Sb2O4 (2) (Aldrich) with a different morphology improves the maleic anhydride selectivity as compared to the reference (VO)2P2O7 catalyst (synergetic effect). After reaction, no ternary VPSbO phase is detected by XRD and DTA and it was controlled that the two α-Sb2O4 oxides are catalytically inactive.The (VO)2P2O7 reference catalyst which produced only maleic anhydride as mild oxidation product shows by XPS a slightly oxidized surface (14% V5+–86% V4+).Contamination of the (VO)2P2O7 phase by migration of Sb species occurs after catalytic reaction in the case of the M1 mixture as shown by XPS, LEIS and TEM–EDX analysis. XPS showed that (VO)2P2O7 is partially superficially reduced (86% V4+–14% V3+). This feature is consistent with the decrease of acidity as observed by pyridine adsorption–desorption.In opposition with the M1 mixture, no contamination of the (VO)2P2O7 phase is observed after catalytic reaction in the case of the M2 mixture. The XPS study shows, in this case, that (VO)2P2O7 is partially oxidized (30% V5+–70% V4+) at a higher level than for the reference (VO)2P2O7 catalyst. This situation is associated with the increase of selectivity observed for maleic anhydride (synergetic effect).The difference in the catalytic results for the two M1 and M2 mixtures, as compared to the (VO)2P2O7 reference catalyst, can be explained by the alteration of the surface composition of (VO)2P2O7 and the distribution of vanadium oxidation state due to different interaction between Sb2O4and (VO)2P2O7, depending on the orientation of the α-Sb2O4 crystals.  相似文献   

20.
Barium-containing NO x storage catalyst showed serious deactivation under thermal exposure at high temperatures. To elucidate the thermal deterioration of the NO x storage catalyst, four types of model catalyst, Pt/Al2O3, Ba/Al2O3, Pt–Ba/Al2O3, and a physical mixture of Pt/Al2O3 + Ba/Al2O3 were prepared and their physicochemical properties such as BET, NO TPD, TGA/DSC, XRD, and XPS were evaluated while the thermal aging temperature was increased from 550 to 1050°C. The fresh Pt–Ba/Al2O3 showed a sorption capacity of 3.35 wt%/g-cat. but the aged one revealed a reduced capacity of 2.28 wt%/g-cat. corresponding to 68% of the fresh one. It was found that this reduced sorption capacity was directly related to the deterioration of the NO x storage catalyst by thermal aging. The Ba on Ba/Al2O3 and Pt–Ba/Al2O3 catalysts began to interact with alumina to form Ba–Al solid alloy above 600°C and then transformed into stable BaAl2O4 having a spinel structure. However, no phase transition was observed in the Pt/Al2O3 catalyst having no barium component, even after aging at 1050°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号