首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous imbibition (SI) is one of the most important mechanisms in reservoir engineering. In order to activate of this mechanism completely in carbonate reservoirs, wettability of these oil wet rocks should be altered to water-wet. Multi-step spontaneous imbibition tests were designed and conducted in this study. Results indicated that mixture of smart water and nano silica could increase oil recovery up to 5 percent. Effect of acid number of crude oil on oil recovery of this mixture was investigated by using three samples of crude oil during SI tests: A (0.38 mg KOH/g), B (0.25 mg KOH/g) and C (0.18 mg KOH/g). Maximum oil recovery of SI tests was recorded for oil sample C which had lowest acid number. Ion analysis of imbibing fluids indicated sharp reductions in concentration of sulfate ion in each step of SI tests which confirmed occurrence of ion exchange mechanism in the rock surface of core samples.  相似文献   

2.
Enhanced oil recovery is proposed as a solution for declining oil production. One of the advanced trends in the petroleum industry is the application of nanotechnology for enhanced oil recovery. Silica nanoparticles (SiNPs) are believed to have the ability to improve oil production, while being environmentally friendly and of natural composition to sandstone oil reservoirs.In our work, we investigated the effect of silica nanoparticles flooding on the amount of oil recovered. Experiments were carried using commercial silica of approximately 20 nm in size. We used sandstone cores in the core flooding experiments. For one of the cores tertiary recovery is applied where brine imbibition was followed by nanofluid imbibition. While in the other cores secondary recovery was applied where primary drainage is directly followed by nanofluid imbibition. We investigated the effect of concentration of nanofluid on recovery; in addition, residual oil saturation was obtained to get the displacement efficiency. Silica nanofluid of concentration 0.01 wt%, 0.05 wt%, 0.1 wt% and 0.5 wt% were studied.The recovery factor improved with increasing the silica nanofluid concentration until optimum concentration was reached. The maximum oil recovery was achieved at optimum silica nanoparticles concentration of 0.1 wt%. The ultimate recovery of initial oil in place increased by 13.28% when using tertiary flooding of silica nanofluid compared to the recovery achieved by water flooding alone. Based on our experimental study, permeability impairment was investigated by studying the silica nanoparticles concentration, and the silica nanofluid injection rate. The permeability was measured before and after nanofluid injection. This helped us to understand the behavior of the silica nanoparticles in porous media. Results showed that silica nanofluid flooding is a potential tertiary enhanced oil recovery method after water flooding has ceased.  相似文献   

3.
In the last few years, there has been a growing interest in smart water (SW) flooding as economically and environmentally friendly method to Enhanced Oil Recovery (EOR) in sandstone and carbonated reservoirs. Formation damage especially fines migration and clay swelling by lowering salinity and changing the ionic environment, causes the significant decrease in permeability of the sandstone reservoirs. In this study, an experimental study has been undertaken to illuminate the effect of formation damage during smart water injection as the function of clay types. The state of the art procedure has been established in direction of sandpack construction containing favorable clay content. Injection of smart water was performed in sandpacks with different clay types (montmorillonite and kaolinite). The results show that the presence of montmorillonite augments formation damage and enhances oil recovery. Analyzing Interfacial Tension (IFT) experimental data showed that interaction of oil/SW had no great influence on increasing oil recovery. The results have been achieved based on extensive experiments including Differential Pressure (DP) measurements, Zeta potential, and Recovery Factor (RF). Two mechanisms were proposed to interpret permeability reduction and amount of oil produced values which are clay swelling, and detachment/re-attachment for montmorillonite and kaolinite, respectively.  相似文献   

4.
One of the most promising methods for improving oil recovery from carbonate reservoirs is surfactant flooding in which the trapped oil can be mobilized by alteration in the wettability of rock surfaces and also reduction in the interfacial tension between oil and water. Adsorption of surfactants on carbonate minerals plays a key role in designing this process and may make it less effective for enhancing oil recovery. Natural surfactants have been proposed by many researchers since they have lower cost and also less detrimental environmental effects compared to the industrial surfactants. Well-established predictive models for predicting the adsorption of natural surfactants have some issues which need to be addressed. Therefore, developing an accurate, rapid and simple model is crucial. In this study, a least square support vector machine (LSSVM) optimized with coupled simulated annealing (CSA) algorithm is developed for accurate prediction of natural surfactants kinetic adsorption on carbonate minerals. Obtained results by this model were in a very good agreement with experimental results. Additionally, the results showed that the proposed model has the highest accuracy and performance in comparison to the previous kinetic models. Afterward, the effect of natural surfactants adsorption on the amount of oil recovery and also the quality of the produced oil was investigated via core flooding tests for showing the importance of determining the adsorption of surfactants before any surfactant flooding. Results demonstrated that lower surfactants adsorption yields higher oil recovery factor and oil with higher viscosity.  相似文献   

5.
The authors discuss the nanogel application as deep diversion agent for enhanced oil recovery (EOR). Experimental studies of nanogel show that its utilization allows combining the advantages of gels used in bulk and sequential injection. Addition of light metal nanoparticles subsequently increases the gel system strength while crosslinking, however it has no impact on flow ability of polymer solution. The nanogels application as deep diversion agent for EOR was studied in treatment experiments at two crossflow layered artificial cores. Nanoparticle addition increases residual resistance factor of polymer gel up to 22% and show a more long-lasting effect. Oil recovery increase for nanogel application was 6% original oil in place (OOIP) in comparison with gel without nanoparticles. It has been shown the gel bank's position impact on oil recovery efficiency at in situ fluid diversion operations. The series of experiments for both types of gels with three different gel blank positions were conducted. Experimental results showed the best value of 19% and 28% OOIP recovery increase in near production line position for gel and nanogels, respectively.  相似文献   

6.
The use of nanoparticle/polymer suspension for high-temperature and high-saline reservoir was investigated by measuring rheological properties and characterizing the interaction between polymer and nanoparticle. Polyacrylamide (PAM) and silica nanoparticle were used in this study. The result indicates that silica/PAM suspension have higher viscosity and viscosity retention was improved in the presence of salt and at high temperature as compared to simple PAM solution. Improved performance was attributed to the formation of complex macromolecular structure. PAM gets adsorbed on the surface of silica due to hydrogen bonding and the silica particle act as physical cross-linker between polymeric chains, resulting in improvement of viscosity.  相似文献   

7.
The resources of heavy oil in the world are more than twice those of conventional light crude oil and the technology utilized for the recovery of heavy oil has steadily increased recovery rates. Polymer flooding is the most commonly applied chemical enhanced heavy oil recovery technique. However, still there is a need for a large amount of polymer, leading to high operational costs, presenting a big challenge in technologies. This challenge can be addressed by considering the newly emerging nanomaterials especially those made from silica. In this work, the author focuses on roles of silica nanoparticles on polymer viscosity and improvement of recovery in heavy oil recovery. The author presents the results obtained from a coreflood experiment with polymer injection in heavy oil at 1320 mPa.sec viscosity. The results indicate that polymer flooding with higher viscosity can significantly improve oil recovery. These laboratory results will be helpful for the planning of nano silica polymer flooding for heavy oil reservoirs. Also flooding test showed a 8.3% increase in oil recovery for nanosilica polymer solution in comparison with polymer solution after one pore volume fluid injection.  相似文献   

8.
智能水驱是一项低成本、环保、潜力巨大的油田开发新技术。以国外众多学者的研究成果为依据,分析归纳智能水驱提高采收率的作用机理主要包括:类碱驱、微粒迁移、多组分离子交换和储层润湿性转变,并通过物理模拟实验验证智能水驱的提高采收率机理。研究结果表明:用智能水驱进行岩心流动实验时,产出水的pH值明显高于高矿化度水驱,最大pH值能够达到8.23,说明智能水驱能够发挥类似碱驱的作用从而提高采收率;用智能水分别驱替未煅烧和650℃下煅烧过的岩心,最终采收率分别为56.48%和53.45%,因煅烧过的岩心内粘土不再发生迁移,其采收率明显低于未煅烧的,说明智能水驱过程中微粒的迁移能够提高采收率;检测智能水驱产出液中各离子的质量浓度发现,Ca~(2+)的质量浓度先大幅度增加后逐渐降低,Mg~(2+)的质量浓度先小幅度增加再逐渐减小,最终逐渐趋于平稳,说明水驱过程中存在少量Mg~(2+)交换Ca~(2+)以及智能水中的H~+交换粘土表面大量的Ca~(2+)的过程,可见智能水驱过程中多组分离子发生了交换,从而提高了采收率;70 h后在油滴1周围改滴智能水,油滴与岩心的接触角由最初的124°逐渐减小,最终降至67°,润湿性由亲油性变为亲水性,可见智能水驱能够使岩心表面的润湿性发生转变,从而提高采收率。  相似文献   

9.
Chemical methods of enhanced oil recovery (CEOR) are applied for improving oil recovery from different kinds of oil reservoirs due to their ability for modifying some crucial parameters in porous media, such as mobility ratio (M), wettability, spreading behavior of chemical solutions on rock surface and the interfacial tension (IFT) between water and oil. Few decades ago, the surfactant and polymer flooding were the most common CEOR methods have been applied for producing the remained hydrocarbon after primary and secondary recovery techniques. Recently, more attention has been focused on the potential applications of the nanotechnology in enhanced oil recovery (EOR). For this purpose, many studies reported that nanoparticles (NPs) have promising roles in CEOR processes due to their ability in changing oil recovery mechanisms and unlocking the trapped oil in the reservoir pore system. This paper presents a comprehensive and up-to-date review of the latest studies about various applications of nanoparticles (NPs) within the surfactant (S), polymer (P), surfactant-polymer (SP), alkaline-surfactant-polymer (ASP) and low salinity waterflooding processes, which exhibits the way for researchers who are interested in investigating this technology. The review covers the effects of nanoparticles on wettability alteration, interfacial tension reduction and oil recovery improvement, and discusses the factors affecting the rock/fluid interaction behavior in porous media through the nanofluid flooding.  相似文献   

10.
This investigation adopts a new perspective on wettability alteration as a function of temperature. Colloidal (i.e., DLVO) theory and calculations are used to interpret results from laboratory-scale displacements. Water imbibition tests were conducted with 9 reservoir cores from a diatomaceous reservoir. Permeability and porosity of cores varied from 0.2 to 0.7 md and 46% to 65%, respectively. The experiments included spontaneous counter-current water imbibition followed by forced co-current water imbibition to residual oil saturation. The fluids were 34° API crude oil and synthetic formation brine. All tests were isothermal and temperatures ranged from 45 to 230 °C at pressures sufficient to maintain liquid water. The experimental results show that an increase in temperature results in: (1) a substantial increase in imbibition rate and extent of oil recovery, (2) a slight reduction in residual oil saturation, and (3) a significant shift in the Amott wettability index from intermediate and weakly water wet to strongly water wet. DLVO calculations illustrate detachment of fines from pore surfaces at high temperature. Fines detachment is a mechanism for altering wettability. Release of fines coated with oil exposes clean water-wet pore surfaces. Further calculations indicate the water–oil contact angle decreases as temperature increases indicating a systematic increase in water wettability consistent with experimental measurements of the Amott index.  相似文献   

11.
Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.  相似文献   

12.
Increasing demand and dwindling supply of crude oil have spurred efforts toward enhancing heavy oil recovery. Recently, applications of nanoparticles (NPs) for heavy oil recovery have been reported. In this study, the use of clay NPs is investigated for enhanced oil recovery. Surfactant solutions and newly developed nanosurfactant solutions with 1600–2000 ppm SDS were tested. The crude oil had a viscosity of 1320 mPa.sec at test conditions. In this study, the role of NPs in the adsorption of surfactant onto solid surfaces of reservoir core is studied. The core flooding experiments showed high potential of using nanoclay for enhancing heavy oil recovery, where 52% of surfactant flooded heavy oil was recovered after injecting the NPs solvent. Moreover, nanoclay has generally better performance in enhancing the oil recovery at surfactant solution, near CMC conditions. The nanoclay surfactant solutions improved oil recovery. The nanoclay, however, showed improved performance in comparison with clay.  相似文献   

13.
罗家油田罗801块微生物驱矿场试验   总被引:5,自引:2,他引:5  
针对胜利油区罗家油田罗 80 1块产量递减快的开发状况 ,进行了微生物强化水驱提高采收率试验研究。结合油藏特点及地层流体物性 ,从菌种选择、适应性评价、注入时机、模拟驱油效果等方面进行了室内研究 ,确定了现场试验方案。现场实施后取得了明显降水增油效果 ,试验区累积增产原油 2 .36× 10 4t,区块开发效果得到改善  相似文献   

14.
聚合物驱阶段提高采收率预测模型的建立与应用   总被引:1,自引:0,他引:1  
为了预测聚合物驱开发指标,根据实际生产数据,综合应用驱替特征曲线和经验回归方法,建立了聚合物用量与提高采收率变化规律的预测模型。并对A油田39个一类油层和二类油层聚合物驱区块进行拟合和预测,计算结果表明:在半对数坐标系下,聚合物用量与提高采收率成线性关系;在聚合物驱的含水稳定阶段与含水回升阶段,该方法预测精确度较高,提高采收率绝对误差为0.01 % ~0.58 % ,相对误差为0.09 % ~6.24 % 。该预测模型能够应用于聚合物驱的长远规划与年度规划,也可用于聚合物驱开发调整措施效果评价和确定单井组转后续水驱时机。  相似文献   

15.
16.
聚合物驱宏观渗流机理的三维油藏物理模拟研究   总被引:3,自引:0,他引:3  
利用高温高压复杂驱动体系三维物理模拟系统研究聚合物驱提高原油采收率的宏观渗流机理。用模型上布置的压差传感器和饱和度测量探针,测量了聚合物驱的开采效果、压力场和饱和度场变化。对于三维物理模型,聚合物在油藏内的吸附、滞留等作用使流动阻力增大、油藏压力上升、液流转向。聚合物从主流线流向两侧的剩余油区,不仅驱替出主流线上的剩余油,而且通过提高波及范围驱替出两侧剩余油区内的剩余油,在油藏内形成一个从主流线向两侧扩展的油墙,提高了宏观波及体积。三维物理模拟研究动态饱和度场和压力场,能够更好地描述聚合物驱提高原油采收率的驱油机理。图8参13  相似文献   

17.
Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension (IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study, which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.  相似文献   

18.
自发渗吸是致密油藏中一种重要开发机理,构建准确的渗吸驱油数学模型对明确致密油藏渗吸驱油规律具有重要意义.基于毛管束模型,考虑束缚水和残余油饱和度,利用二维高斯分布函数拟合从高压压汞测量得到的致密砂岩孔喉分布,构建岩心尺度致密砂岩基质渗吸驱油数学模型,并通过致密砂岩渗吸实验对数学模型进行验证,开展渗吸规律影响因素分析,明...  相似文献   

19.
采用水热合成法以F127为模板剂制备介孔碳材料(MC),一步合成法引入Fe(NO 3 ) 3 •9H2O得到铁改性介孔碳材料(Fe/MC-x,x为合成原料中铁源与间苯二酚的摩尔比,x=0.5、1、1.5),对改性前后的材料进行TEM、N2吸-脱附、XRD及FI-TR表征,通过考察吸附剂量、吸附等温线、吸附动力学对其吸附水中对硝基苯酚(p-NP)进行了研究。结果表明,所得MC和Fe/MC-x的孔径分布集中于3~4 nm,比表面积分别为643.6、635.6、636.0和587.2m2/g。实验条件下,Fe/MC-x的吸附性能优于MC,其中Fe/MC-1.0有最大吸附量220.35 mg/g,对应去除率为92.33%;平衡吸附量均与初始浓度呈正相关,与吸附剂投加量呈负相关,高温不利于吸附,P-NP在MC和MC-x上的吸附行为符合Freundlich模型;改性行为加快了吸附速率,吸附过程符合准二级动力学模型,主要为化学吸附控制吸附速率。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号