首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Hydrotreating of Maya crude oil was carried out at a pilot plant scale under the following reaction conditions: pressure of 70–100 kg/cm2, hydrogen-to-oil ratio of 5,000 ft3/bbl, temperature of 380°C–420°C, and space-velocity of 0.33–1.5 h?1. Asphaltenes were precipitated from the feed and from all hydrotreated products using n-heptane as solvent. Hence, variations in asphaltenes concentration were obtained as a function of reaction conditions. Three different kinetic models were studied: a simple power-law model, a modified power-law model which assumes a parallel path reaction for asphaltenes hydrocracking with the same reaction order for more reactive and less reactive asphaltenes, and the same modified power-law model with different orders for both types of asphaltenes. This latter model exhibited the best fit of experimental asphaltenes concentrations.  相似文献   

2.
ABSTRACT

Average structure data for twelve asphaltenes are reported, based on 13C- and H- n.m.r. spectroscopy combined with elemental, molecular weight and functional group analyses. The asphaltenes were from supercritical gas extraction, flash pyrolysis and hydrogenation of a brown and a bituminous coal. The effect of the reaction temperature and, for hydrogenation, the catalyst and solvent on the nature of the asphaltene produced was studied. The asphaltene obtained from supercritical gas extraction of the brown coal at 350°C was the least aromatic (fa = 0.44) with the highest H/C atomic ratio (1.16) and probably consists mainly of single ring aromatlcs with about half of the aromatic sites substituted. A significant proportion of the carbon in this asphaltene is in long alkyl chains and the hydroxyl content is high. Whereas, the asphaltenes produced by hydrogenatlon of the bituminous coal at 450°C were far more aromatic with more highly condensed but less substituted aromatic ring systems and few, if any, long alkyl chains, together with a lower hydroxyl content. The asphaltenes obtained from the brown coal are less aromatic with less condensed aromatic ring systems but a higher degree of aromatic substitution than those produced from the bituminous coal under the same conditions. The asphaltenes formed at 450°C had lower H/C atomic ratios, molecular weights and degree of aromatic substitution, but higher aromaticities Ohan those produced at 35O°C or 400°C under like processing conditions. The asphaltene produced in the presence of both stannous chloride catalyst and tetralin was less aromatic than when either of these species was absent.  相似文献   

3.
Abstract

A pentane-insoluble asphaltene was processed by thermal cracking, thermal hydrocracking, and catalytic hydrocracking in a microbatch reactor at 430°C. The experimental data of asphaltene conversion fit second-order kinetics adequately to give the apparent rate constants of 1.704 × 10?2, 2.435 × 10?2, and 9.360 × 10?2 wt frac?1 min?1 for the above three cracking processes, respectively. A three-lump kinetic model is proposed and solved to obtain rate constants of parallel reactions of asphaltenes to produce liquid oil (k1) and gas + coke (k3) and a consecutive reaction from liquid to gas + coke (k2). The value of k1 is 1.697 × 10?2, 2.430 × 10?2, and 9.355 × 10?2 wt frac?1 min?1; k2 is 3.605 × 10?2, 2.426 × 10?2, and 6.347 × 10?3 min?1; and k3 is 6.934 × 10?5, 5.416 × 10?5, and 4.803 × 10?5 wt frac?1 min?1 for asphaltenes thermal cracking, thermal hydrocracking, and catalytic hydrocracking, respectively. Analysis of selectivity shows that the catalytic hydrocracking process provides the highest liquid production, and the coking process provides the highest coke formation, as expected. An induction period of coke formation was found to increase from thermal cracking to thermal hydrocracking to catalytic hydrocracking process.  相似文献   

4.
ABSTRACT

Iraqi reduced crude (350°C+) with a sulfur content of 4.3 wt% and a total metal content (Ni+V) of 141 WPPM was n-heptane deasphalted at specified conditions. The deasphalted oil (97.2 wt% of original residue) contains 4.1 wt% of sulfur and 103 ppm of metal. The original reduced crude and deasphalted oil were hydrotreated on a commercial Ni-Mo-alumina catalyst presulfided at specified conditions in a laboratory trickle-bed reactor. The reaction temperatures varied from 300 to 420°C with the liquid hourly space velocity (LHSV) ranging from 0.37 to 2.6 h?1. Hydrogen pressure was kept constant throughout the experiments at 6.1 MPa, with a hydrogen/oil ratio of about 300 NLL?1 (normal liters of hydrogen per liter of feedstock). Analysis for sulfur, nickel, vanadium and n-pentane asphaltenes were carried out for hydrotreated products from both the original residue and the deasphalted oil. The comparison of the results obtained for the hydrotreatment of deasphalted oil and original reduced crude indicates that the removal of sulfur, nickel and vanadium was higher for the deasphalted oil than those obtained for the non-deasphalted residue over the entire range of conversion. The exclusion of extremely high molecular weight asphaltenes by n-heptane deasphalting seems to improve the access of oil into catalyst pores resulting in higher desulfurization and conversion of the lower molecular weight asphaltenes. The sulfur content of n-pentane precipitated asphaltenes remained unchaneed with LHSV for various temperature for hydrotreated products produced from both deasphalted oil and original reduced crude.  相似文献   

5.
ABSTRACT

Hondo and Maya vacuum resids and their isolated asphaltenes were pyrolyzed at 400, 425, and 450°C (752, 797, 842°F) for batch holding limes ranging from 20 to 180 minutes. Maltene, asphaltene, and coke product fractions were isolated by a solvent extraction sequence; gas yield was determined gravimetrically. Results were summarized in terms of a lumped reaction network. The variation of product yields, kinetics, and apparent activation energies with feedstock and asphaltene environment provided insight into asphaltene structure and thermal reaction pathways.  相似文献   

6.
Abstract

It is essential that precipitation of asphaltenes is recognized early in the planning stage of any CO2 enhanced oil recovery (EOR) project so that appropriate testing can be performed to evaluate whether there will be a negative impact on reservoir performance. This article presents detailed evaluations of slim tube data that were obtained during CO2 injection using a medium-gravity Iranian crude oil.

A crude oil from Bangestan reservoir of Ahwaz oilfield containing 18.2% asphaltenes with ~31.5 °API gravity was flooded by purified CO2 (>96% CO2) in a slim tube apparatus under 2,700 psi at 110°C. We were going to determine the minimum miscibility pressure (MMP) of the sample oil under injection of CO2 flood, but when a CO2 slim tube test was performed for this oil at 2,700 psi, less than half of the saturated oil in the tube was recovered, which implied that the displacement process was immiscible. At this pressure, the asphaltene deposition in the slim tube apparatus was so severe that even a pressure gradient of 6,200 lb/in2 was not able to displace any fluid through the capillary tube. Therefore, we abandoned MMP determination with this sample and investigated the problem.

Due to the high percentage of asphaltenes in the sample, using the slim tube MMP as an apparatus for determining minimum miscibility pressure of CO2 and sample oil can be misleading.  相似文献   

7.
Abstract

The Furrial crude oil originated in northern Monagas State. This shows problems such as the colloidal instability of the asphaltenes fraction present in them, causing its precipitation. This work is oriented to achieve an interpretation of the colloidal behavior of the asphaltenes through the study of the effect of the hydrotreating reactions (HDT) on the asphaltenes of the Furrial crude oil, using NiMoS/γ-Al2O3 as a catalyst. The results obtained after HDT reactions were analyzed to know the percentage of asphaltene and their fractions in cyclohexane, the measurement of flocculation thresholds and molecular weights by the VPO technique, and 13C NMR as well as the determination of the total sulfur content. Appreciable changes on the asphaltene of the Furrial crude oil and its fractions in cyclohexane after HDT, under conditions used, were observed. In general terms, the amount of asphaltene diminished and the percentage of distribution for insoluble fraction in cyclohexane (IFC) and for soluble fraction in cyclohexane (SFC) was affected causing an increase in the stability of the asphaltene. The asphaltene and IFC were observed to be a pronounced variation of the molecular weight average in number, in comparison with SFC. 13C NMR spectra indicate that the hydrotreated asphaltene shows structural change, and IFC presents a variation of the percentage of sulfur minor in comparison to SFC.  相似文献   

8.
Abstract

The high viscous crude oil from Shuguang No. 1 zone of Liaohe oil field has the characteristics of high density (ρ 20 = 0.9977 g cm?3), great viscosity (ν 100 = 1223.9 mm2 s?1) and high pour point (48°C), which are similar to those of the residue distillation of general crude oils. It contains no gasoline distillation and the diesel oil fraction yield is just 7.19%. It is often used as fuels after emulsification. But this oil is so vicious that it cannot be atomized uniformly and burned fully. In order to make full use of it, this kind of high viscous crude oil has been evaluated comprehensively and the properties of its various distillations are analyzed respectively. The results indicate that this crude oil contains less wax, but more resins and asphaltene, which belongs to low-sulfur naphthene-base crude oils and it is the suitable material to produce high-quality paving asphalt. Based on its characteristics, the optimum processing scheme is put forward and the high-quality paving asphalt is produced by using the distillation higher than 350°C.  相似文献   

9.
Abstract

Asphaltenes from three crude oils were precipitated by using a pressurized system. Different conditions during the precipitation of asphaltenes were studied: pressure was varied between 15 and 45 kg/cm2 and temperature between 40°C and 100°C. The effect of contact time and solvent-to-oil ratio was also studied in the range of 0.5–6 hr and 2:1 to 5:1 mL/g, respectively. Asphaltenes properties were analyzed as a function of pressure and temperature. It was found that in a deeper way temperature influences the asphaltenes properties than pressure in the range studied in this work. Asphaltenes properties were highly dependent on the nature of crude oil. Various correlations were developed and experimental and calculated asphaltenes contents and properties were in good agreement with absolute error less than 0.2%.  相似文献   

10.
ABSTRACT

Boscan asphaltenes were precipitated from the crude oil using mixtures of toluene and heptane at temperatures of 24, 50, and 80°C. Another process of extracting solid n-heptane asphaltenes (24°C) using the same solvent systems and temperatures was also investigated. Asphaltene yield is different by the two processes at similar conditions although both increases in temperature or toluene content lead to lower solid yield. This way the asphaltene continuum was investigated from incipient flocculation to total n-heptane precipitated asphaltenes. The asphaltenes were analyzed using elemental analysis, fluorescence spectroscopy, vapor pressure osmometry, and HPLC size exclusion chromatography. The distribution of porphyrins was also measured using absor-bance spectroscopy. The asphaltenes were found to follow a regular trend in elemental ratios, H/C and N/C, indicating increased aromaticity and nitrogen content as the solid yield decreases. Also the molecular weight was seen to increase. Size exclusion chro-matograms and fluorescence spectra were found to be different comparing solids from the two separation processes. This indicates that the asphaltene fractions obtained by extraction of solid asphaltenes are altered relative to asphaltenes obtained by ordinary precipitation. The porphyrin concentration was found to diminish rapidly with solid yield decrease in both precipitation and extraction experiments, the latter fractions, however, containing significantly less asphaltenes indicating an adsorption step in the coprecipitation of porphyrins. Soluble fractions were found to exhibit relatively low molecular weights and an apparent lack of indications of association up to a point of solubles exceeding 50 % of the total asphaltenes. The-latter have implications for the further understanding and experimental investigation. of the associating nature of asphaltenes such as concentration effects during analytical characterization.  相似文献   

11.
The characteristics of the high viscous crude from No.1 Shuguang Zone of Liaohe Oil Field are similar to those of residue distillates of general crude such as high density (ρ20 = 0.9977 g.cm?3), high viscidity (ν100 = 1223.9 mm2.s?1) and high solidifying point(SP = 48°C). It contains no gasoline distillate and diesel yield is just 7.19%. And now it is only used as fuel. In order to make full use of this oil, the high viscous crude from No.1 Shuguang Zone of Liaohe Oil Field is evaluated comprehensively. And the properties of various distillates from the crude are analyzed and evaluated respectively. The results indicate that this oil contains less wax, but rich in resin and asphaltene, which belongs to low sulfur naphthene-base crude oil and can be used as feedstock to produce high paving asphalt. According to its characteristics, the optimum processing scheme is put forward and the high grade paving asphalts are produced by using the distillates higher than 350°C.  相似文献   

12.
ABSTRACT

Asphaltene onset concentration and bulk deposition were measured for a typical live reservoir oil titrated with n-C6H14, n-C5H12, n-C4H10, C3H8, C2H6, CH4 and CO2 at 100° C (212 ° F) and 29.9 MPa (4340 psia). The concentration of titrant at asphaltene onset was observed to decrease approximately in a linear fashion with decreasing molecular weight of the paraffinic solvent; CH4 did not induce any asphaltene precipitation. Bulk deposition experiments were performed using a solvent: oil volume ratio of 10:1; the results indicated that the weight percent of asphaltenes precipitated increased exponentially with decreasing molecular weight of the paraffinic solvents. More importantly, the asphaltene molecular weight showed a maximum for n-C4H10 precipitated asphaltenes. Possible explanations for this unusual result are presented.  相似文献   

13.
This research article offers data on the spectroscopic elucidation of the asphaltene fraction of Nigerian bitumen in order to establish its features that might aid the developmental processes of the fossil fuel. Bitumen was extracted from the oil sands obtained from six locations where there were oil sand out-crops in Southwestern Nigeria using toluene via Soxhlet extraction and then deasphalted using n-pentane. The organic components of the precipitated asphaltenes were investigated using Fourier transform infrared spectrometry, while the elemental contents were determined using Inductively coupled plasma atomic emission spectroscopy and carbon/nitrogen analyzer. The results revealed that the average content (29.15 wt%) of Nigerian bitumen asphaltenes was less than that of Athabasca (40.10 wt%) but slightly higher than that of Cold Lake bitumen (24.40 wt%). The IR spectra of the asphaltenes indicated the presence of various organics and heteroatoms corroborating that asphaltenes composed of high molecular weight polycyclic constituents comprising of nitrogen, sulfur, and oxygen heteroatoms. The results indicated that the values of Cr, Cu, Fe, Mn, Ni, S, V, and Zn were comparatively higher in the asphaltenes than the parent bitumen due to the presence of comparatively high levels of porphyrins in the asphaltenes than the bitumen, while the concentrations of all the elements were higher in the Nigerian bitumen asphaltene than Nigerian crude oil asphaltene (except S and C). Cross plot analysis result between the asphaltenes and bitumen using their elemental mean concentrations as variables indicates that significant and positive correlation (R2 = 0.975) exists between them, indicating very strong interelement and geochemical relationships between them. The elements showed close clustering, indicating similar sources because the elements were known to associate with petroleum hydrocarbon formation. Also, apart from N, S, and C, other elements are transition metals with similar chemical affinity.  相似文献   

14.
Abstract

The high viscous crude oil for Shuguang No. 1 zone of Liaohe oilfield has the characteristics of high density (ρ20 = 0.9977 g.cm?3), high viscidity (ν100 = 1,223.9 mm2.s?1), and high solidifying point (SP = 48°C), which belongs to low sulfur naphthene-base crude oil. The comprehensive evaluations indicate that this oil has no gasoline fraction and the diesel oil is only 7.19%. In addition, the lubricating oil distillate is not suited to produce lubricating oil and heavy oil is not good feedstock for catalytic cracking. However, the low wax and high resin, as well as asphaltene content, make it an ideal raw material for producing paving asphalt. The vacuum residue of this crude acted as base oil and three kinds of waste oil with high aromatics and low wax content were selected as blenders. Various brands of high-grade paving asphalts meeting GB/T15180-94 (China) specification were produced by blending method. The blending effects were investigated and corresponding mathematics models were set up.  相似文献   

15.
This paper focus on the main influence factors (temperature, pressure, and mass fraction of CO2) on the state of asphaltene in the crude oil during CO2 flooding by using high temperature and high pressure microanalysis system of solid precipitation. For the simulated oil sample – CO2 system, the state of asphaltene is not affected by temperature within this range of 50°C to 100°C, the particle size of the asphaltene has an increase with the increase of the pressure from 8MPa to 40 MPa. When the mass fraction of CO2 is less than 35%, the state of the asphaltene has not changed and the asphaltene particles are in a suspension state. When the mass fraction of CO2 increases to 40%, the aggregation of the asphaltenes occurs and then form precipitation. With the further increase of the mass fraction of CO2, the particle of the asphaltene aggregates has a significant increase. For the field development project design of CO2 flooding, the influence of the temperature can be ignored, the appropriate mass fraction of CO2 is below 35% and the gas injection pressure should maintain a relatively low value. The results can provide a theoretical basis to avoid the asphaltene precipitation during CO2 flooding.  相似文献   

16.
Borehole blockage caused by asphaltene deposition is a problem in crude oil production in the Tahe Oilfield, Xinjiang, China. This study has investigated the influences of crude oil compositions, temperature and pressure on asphaltene deposition. The asphaltene deposition trend of crude oil was studied by saturates, aromatics, resins and asphaltenes (SARA) method, and the turbidity method was applied for the first time to determine the onset of asphaltene flocculation. The results showed that the asphaltene deposition trend of crude oil by the turbidity method was in accordance with that by the SARA method. The asphaltene solubility in crude oil decreased with decreasing temperature and the amount of asphaltene deposits of T739 crude oil (from well T739, Tahe Oilfield) had a maximum value at 60 o C. From the PVT results, the bubble point pressure of TH10403CX crude oil (from well TH10403CX, Tahe Oilfield) at different temperatures can be obtained and the depth at which the maximum asphaltene flocculation would occur in boreholes can be calculated. The crude oil PVT results showed that at 50 , 90 and 130 o C, the bubble point pressure of TH10403CX crude oil was 25.2, 26.4 and 27.0 MPa, respectively. The depth of injecting asphaltene deposition inhibitors for TH10403CX was determined to be 2,700 m.  相似文献   

17.
Abstract

Knowledge of the properties and behavior of asphaltenes and resins is indispensable for the design of preventive and curative measure for emulsion problems created by the presence of asphaltene, resins, and other organic and inorganic solids. In order to understand the phenomena of water-oil emulsions formed in Kuwaiti oil fields and determine the factors involved in the stabilization of these emulsions, the role of asphaltenes, resins and wax separated from various samples of oil field emulsions formed in Burgan oil field have been evaluated. Physicochemical properties of asphaltenes, resins, wax, and de-asphalted de-resined (DADR) oil samples have been studied via FT-IR, 1H, and 13C NMR, elemental analysis, and differential scanning calorimetry (DSC). These emulsion samples contain different amounts of water ranges from 24 to 35%, asphaltene content ranges from 0.9 to 1.7%, and resin content from 3.7 to 4.6%. IR-FT spectra were performed to identify the various functional groups which have an effect on the stability of water-oil emulsions. The freezing behavior of an emulsion was characterized by differential scanning calorimetry to determine whether the water in the emulsion is free water or emulsified water.  相似文献   

18.
Abstract

The properties of the Hamaca of asphaltenes extra-heavy crude oil (AsfH) of Petroliferous Orinoco Belt can be modified for evaluating the changes produced with hydrotreating (HDT). One characterized the solid modified by means of UV-visible spectroscopy and nuclear magnetic proton resonance (NMR 1H). The samples were put under hydrotreating to 200°C to avoid thermal cracking, atmospheric pressure, and a flow of feeding of 10.5 mL/hr in a fixed-bed reactor in the presence of H2S generated in situ. The reactivity was followed by gas chromatography (GC). All the samples were evaluated before and after being hydrotreated by 1H NMR, total sulfur analysis, and determination of molecular weight average by vapor pressure osmometry (VPO). The obtained results suggest the iron possibly is inserted in the structure of the asphaltene forming a new active phase catalytically, presumably a mixed sulfide (pyrrotite type) of iron-metal of transition (V and Ni) present in the asphaltene.  相似文献   

19.
Abstract

Using simultaneous thermogravimetry and differential scanning calorimetry, thermal stability and possible phase transitions of asphaltene sulfocationites and native asphaltenes have been evaluated; the kinetic characteristics of heating have been determined, namely, onset temperature of decomposition, stages of decomposition, and temperature ranges of stability. It has been determined that asphaltene sulfocationites retain structural-group features (IR spectroscopy method) and sorption characteristics while heating up to 350?°C.  相似文献   

20.
This work focused on the synthesis and characterization of nonylphenol formaldehyde resins (NPFR) as examples of active molecules for preventing asphaltene precipitation in vacuum residue (VR) and hydroprocessed petroleum samples. The evaluation for the NPFR as asphaltene dispersants was carried out using the on-column filtration technique at room temperature and near process conditions (195°C). The results indicated that NPFR (molecular weight = 900–4800 Da) are active for the reduction of asphaltene content of gravimetrically separated asphaltene solutions and for VR and hydroprocessed samples at room temperature (35°C) and at 195°C. It was found that the activity of NPFR as asphaltene dispersants depends not only on the type of sample (asphaltenes, virgin or processed) but also on the temperature, molecular weight, and concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号