首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
When sonic nozzles of significantly smaller diameter are used as standard flow meters,the critical
back pressure ratio is affected by the boundary layer at the nozzle throat.However,the effect of the
boundary layer on choking criteria is still controversial.Then,the choking phenomenon of a convergent
nozzle flow has been experimentally investigated using four convergent nozzles with the same
diameter followed by a straight pipe of a variable length.As a result,it is shown that the critical back
pressure ratio is smaller than that for the steady one-dimensional is-entropic flow and decreases as the
boundary layer thickness increases.Moreover,the main flow Mach number at the nozzle exit is
supersonic when the back pressure ratio is equivalent to the choking condition,and the Mach number
increases as the boundary layer thickness increases.  相似文献   

2.
This study deals with an empirical investigation on the convective heat transfer of Cu/oil nanofluid flow inside a concentric annular tube with constant heat flux boundary condition and suggests a correlation to predict the Nusselt number. The average size of particles was 20 nm and the applied nanofluid was prepared by Electrical Explosion of Wire technique with no nanoparticle agglomeration during nanofluid preparation process and experiments. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as the flow Reynolds number, tube diameter ratio, and nanofluid particle concentration on heat transfer coefficient are studied. Using the acquired experimental data, a correlation is developed for the estimation of the Nusselt number of nanofluid flow inside the annular tube. This correlation has been presented by using the exponential regression analysis and least‐squares method. The correlation is valid for Cu/base oil nanofluid flow with weight concentrations of 0.12, 0.36, and 0.72 in the hydrodynamically full‐developed laminar flow regime with Re <140, which is applicable in mini‐ and microchannel heat exchangers, and it is in good agreement with the experimental data.  相似文献   

3.
Pei Gang  Fu Huide  Zhu Huijuan  Ji Jie 《Energy》2012,37(1):384-395
A novel heat pipe photovoltaic/thermal (PV/T) system that could simultaneously supply electrical and thermal energy was proposed. Compared with a traditional water-type PV/T system, the heat pipe PV/T system can be used in cold regions without becoming frozen. A dynamic model of the heat pipe PV/T system was presented, and a test rig was constructed. Experiments were conducted to validate the results of the simulation. Based on the validated model, the performances of the heat pipe PV/T system were studied under different parametric conditions, such as water flow rates, PV cell covering factor of the collector, tube space of heat pipes, and kinds of solar absorptive coatings of the absorber plate.  相似文献   

4.
Forced convection in a combined entry developing length of a convergent pipe under constant wall heat flux boundary condition is performed in this work. Influences of the convergence angle, Reynolds, and Prandtl numbers on the heat transfer and flow field have been investigated. The numerical results are obtained for a wide range of convergence angles (0°–25°), Reynolds numbers (700–2100), and Prandtl numbers (0.707, 5.83). Compared to a traditional pipe, a substantial increase in heat transfer has been achieved with an increase in the pressure drop as the convergence angle increases. In this work, the effect of convergence angle, Reynolds number, and Prandtl number on the overall flow and thermal performance for the aforementioned configuration is investigated. To the best of authors’ knowledge, this investigation has been done for the first time, and it provides new and significant information regarding heat transfer enhancement utilizing a convergent pipe.  相似文献   

5.
新型平板热管式太阳能PV/T集热系统的性能研究   总被引:1,自引:0,他引:1  
文章搭建了新型平板热管式太阳能PV/T集热系统实验台,测试了该集热系统的热电性能。此外,建立了该集热系统的数学模型,并将该集热系统的测量结果和模拟结果进行对比分析,以验证该数学模型的准确性。最后,在相近的测试条件下,对新型平板热管式太阳能PV/T集热系统和传统圆形热管式太阳能PV/T集热系统的热电性能进行对比分析。分析结果表明,在相近的测试条件下,与传统圆形热管式太阳能PV/T集热系统相比,新型平板热管式太阳能PV/T集热系统的日平均热效率和日平均电效率分别提升了16.8%和3.5%,总集热量和总发电量分别提升了78.4%和35.5%。  相似文献   

6.
Laminar forced convection of heat transfer and pressure drop of Al2O3 and CuO/water nanofluids flow through a horizontal tube and wavy channel under constant wall temperature boundary condition is numerically investigated. Two different models were employed in our study: single phase (homogenous and dispersion) and two phase (Lagrangian–Eulerian model or discrete-phase model (DPM) and the mixture). The effects of various parameters, such as particle concentration, particle diameter, particle type, constant or temperature-dependent properties, wave amplitude, Reynolds number and Peclet number on the thermal, and flow field of the Nanofluids are analyzed. Our results revealed that variable properties assumption play a dominant role in horizontal tubes and provide better predictions for the heat transfer enhancement. The difference between constant and variable properties becomes insignificant and can be ignored in wavy channel due to the high mixing and generated recirculation zones, whereas the difference between the DPM and the single-phase variable properties diminish as Peclet number and volume fraction increases. However, dispersion model shows an excellent agreement with the experimental data; the absence of the reference values for the adjustable factor Cd in the open literature put it in a questionable position. Therefore, DPM and homogenous single-phase model with well-chosen thermal conductivity and viscosity correlations can be considered as an accurate way and more dependable in nanofluid simulations especially the homogenous single-phase model because it requires less time, CPU, and memory usage. As expected, it is found that the heat transfer increases as the Reynolds number and particle volume fraction increases, but it is accompanied by a higher pressure drop. The obtained results have been successfully validated and compared with the experimental and numerical data available in the literature.  相似文献   

7.
The effect of the axial conduction through the pipe wall on the performance of a thermosyphon was experimentally investigated in this study. Two 2-phase closed thermosyphons were tested; each had the same dimensions, materials and partially filled with R134a. The only difference between them was that one had a thermal break within the adiabatic section that resisted axial conduction between the evaporator and the condenser sections. The thermosyphons were heated by a constant-temperature hot bath and cooled by water via a concentric heat exchanger. The experiments were performed for different bath temperatures and different fill ratios. It was found that the axial conduction through the pipe wall caused an increase in the overall heat transfer coefficient, evaporation heat transfer coefficient and condensation heat transfer coefficient of the thermosyphon. However, the fraction of heat transfer associated with axial conduction decreased as the heat flux increased. For small heat flux (Tb = 30 °C), the increment of the evaporation and condensation heat transfer coefficient contributed by axial conduction reached 100% and 25%, respectively. For high heat flux (Tb = 60 °C), the increment was negligible (less than 1%).  相似文献   

8.
High heat penetration into a feed stream within a horizontal pipe is described mathematically with a gas flow and heat transfer model. Influences of varied factors on the gas flow and heat transfer in porous media are examined for different conditions. The temperature of the packed‐bed particles and the gas velocity distribution curves are obtained for the feeding service at interruption and at regular charge operating conditions. The numerical results show that the thermal effect to the packed‐bed particles by the seepage flow fluid is high only in the position near the gas entrance. The thermal penetration depth tends to increase with the seepage flow velocity and decrease with the feed rate. The operating conditions and the porosity of solid bed have importance effects on the gas velocity and temperature field in the thermal penetration zone. The model results are found to compare favorably with the experimental data available in the literature. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(6): 553–565, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10109  相似文献   

9.
Im~ctionConfined swirling tWo-e flows are widelyutilized in engineering aPPlications, such as combushonsystems, cyclone separators etc. So they are a tOPic ofgreat interest to the engineering cOInlnunity. Incombushon systems they are used tO enhance the flamestability and tO box the foel and the ondzer well. Incyclone separators they are used to separate the Pridesby the centrifugal force. In all of those engineeringsystems, the behavior of both the particles and the air isof great ~e.St…  相似文献   

10.
A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.  相似文献   

11.
A novel loop heat pipe system was designed for use in solar hot water heating and an analytical model was developed to investigate its thermal performance and determine six major limits to system operation, i.e. capillary limit, entrainment limit, viscous limit, boiling limit, sonic limit, and filled liquid mass limit. Relations among the limits and several associated parameters, i.e. the heat pipe operating temperature, wicks type, heat pipe diameter, and height difference between the absorbing pipes array and condenser (heat exchanger), were established through a comprehensive analyses. It was found that the levels of capillary, entrainment, viscous, sonic, and filled liquid mass limits increased with the increasing temperature; however, the boiling limit was in the adverse trend. It was also found that the mesh screen wicks were able to obtain a higher capillary limit than sintered powder wicks, whilst other limits remained same. Larger pipe diameters would lead to higher operating limits. The height difference between the condenser (heat exchanger) and absorbing pipes (absorber) was the most important factor impacting on heat transfer capacities of the system, and largely affected the capillary limit of the system. It was noted when the pipe (inner) diameter increased to 5.6 mm or above, the governing limit of the system switched from entrainment to capillary. Relationship between the system governing limit, i.e. capillary limit, and the above addressed parameters were analysed. Adequate system configuration and operating conditions were suggested, which were summarized as follows: 6 mm of pipe inner diameter with mesh screen wicks, 58°C of heat pipe operating temperature, and 1.3 m height difference between absorber and condenser (heat exchanger). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The present work shows the slurry flow characteristics of bottom ash particulates having density 2219 kg/m3 at different Prandtl number through horizontal pipe bend. The simulation is carried out by adopting Eulerian two-phase model in conjunction with RNG k-ε turbulence model using available commercial software ANSYS Fluent. The transportation of solid particulates has the settling behaviour in the slurry pipeline and that leads to the sedimentation and blockage of the pipeline resulting more power and pressure drop in the pipeline. Therefore, it is important to know the transport capability of the solid particulates at different Prandtl fluids to minimise the pressure loss. The fluid properties at four Prandtl numbers i.e., 1.34, 2.14, 3.42 and 5.83 are used to carry the bottom ash concentration ranging from 40 to 60% (by weight) at mean flow-velocity ranging from 1 to 5 ms?1. The obtained computational results for pressure drop are validated with the published data in the literature and found in good agreement. The findings show that the pressure drop rises with escalation in flow velocity and Prandtl number for chosen efflux concentration range. The bottom ash particulates flowing at higher Prandtl fluid experiences less pressure drop through bend cross section in comparison to bottom ash particulates flowing at low Prandtl fluid. Finally, the contours of granular pressure, granular temperature and wall shear stress are predicted and discussed in details through the bend cross section to understand the complex slurry flow for chosen Prandtl numbers.  相似文献   

13.
This work represents the properties of electrically aligned carbon nanotubes (CNT)/polycarbonate (PC) nanocomposites towards the development of hydrogen gas separation membranes. A fraction (0.1 weight %) of CNTs synthesized by chemical vapour deposition method have been dispersed homogeneously throughout PC matrix by ultrasonication. The alignment of CNT in PC matrix has been accomplished by applying an external electric field of 1250 V/cm during solution casting. These nanocomposites have been studied by gas permeation, electrical, and dielectric constant measurements. Gas permeability measurements obtained here that electrically aligned nanocomposite membranes can be used as good hydrogen separating media. I–V characteristics and dielectric constant shows the enhancement in conductivity and permittivity of these nanocomposites. Overall experimental results exhibit here that alignment of CNTs in polymer matrix shows the dramatic improvement in mass and charge transport properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study how the magnetohydrodynamic (MHD) pulsatile flow of blood and heat transfer works through a constricted artery with a flexible wall. The human circulatory network consists of veins and arteries that sometimes contain constrictions, allowing the impact of the applied magnetic field on flow fields to be observed. The walls of the flowing medium are considered to be a function of time. The flowing blood is hypothesized as shear-thinning fluid, emulating Yeleswarapu's viscosity replica. Additionally, we consider the energy equation to understand the impact of a magnetic field on heat transfer rates for such flows. The vorticity transport equation along with the stream function equation is obtained using the vorticity–stream function technique. Numerical solutions of the governing nonlinear MHD equations and energy equation in addition to physically pertinent flow conditions were achieved by adapting a finite difference scheme. Considerable attention has been paid to ensure an accurate comparison between the current and previous results. The two sets of numbers appear to match closely. For an even deeper understanding of the flow and heat transport process, the effects of height of stenosis and diverse physiological parameters on time-averaged wall shear stress (TAWSS), rate of heat transport, and so on are explored in depth through their graphical depiction. In the vicinity of the constriction, it is observed that the separation becomes longer with increasing constriction height. Higher magnetic force strength leads to a reduction in separation length. Newtonian fluids transfer heat more rapidly in their narrowing regions and downstream than fluids with non-Newtonian behavior.  相似文献   

15.
Experimental studies are carried out on the operational characteristics of the top-heat-type long heat transport loop. This loop consists of a heated section, a cooled section, a reservoir, valves and tubes connecting these components. The heated section is about 3 m higher than the cooled section, and water is used as the working fluid inside the loop. Heat is applied from a detached heat source to the heated section by a heat transfer fluid through a heat exchanger, while the heat is discharged from the cooled section to a heat sink. It is confirmed that the temperatures and the pressures inside the loop vary cyclically corresponding to the valve operation, and the heat is transported downward continuously from the heated section to the cooled section. The experimental results are also shown on the effects of the liquid flow rate inside the heat exchanger and the temperatures of the heat source and the heat sink on the operational characteristics of the heat transport loop. Moreover, the discussion is made on the pressure difference inside the loop.  相似文献   

16.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

17.
A linear instability analysis was conducted firstly on the interface of a stratified gas-liquid two-phase flow in a circular piper employing a two-fluid model. The constitutive equations simulation technique was discussed, and the dispersive equation of interfacial waves was derived. The effects of flow rates of gas and liquid, liquid viscosity, surface tension and tube inclination on the stability of interface were investigated. A set of non-linear hyperbolic governing equations was deduced from the complete two-fluid model equation by omitting the effect of the surface tension and assuming a quasi-steady-state for the gas phase. Using characteristic line and finite difference, the propagation and growth of the interfacial disturbances were investigated in terms of gas and liquid superficial velocities. Then the results of the non-linear stability analysis were compared with those obtained by the linear stability analysis and experimental data. The non-linear stability analysis not only confirms the conclusions reached by the linear instability analysis, but also gives an insight into the growth and propagation of the interfacial disturbances on the interface of a gas-liquid two-phase flow.  相似文献   

18.
Heat transfer and pressure drop characteristics of a decaying swirl flow in a horizontal pipe are investigated experimentally. The decaying swirl flow is produced by the insertion of vortex generators with propeller-type geometry, a kind of passive heat enhancement tools. Two different cases are comparatively examined: one-propeller case and two-propeller case. In the one-propeller case, the first propeller is placed at the entrance of the flow. In the two-propeller case, the second is placed at a specific distance where the swirl effect generated by the first propeller is decayed. The focus of the study is concentrated on comparatively examining the usage of one or two propeller-type swirl generators on the friction factor and heat transfer. For both cases, the effects of the joint angle about the core of the insert device and the number of the joint vanes attached circumferentially to the device on heat transfer and pressure drop are also investigated. Experiments are conducted at Reynolds numbers ranging from 5000 to 30,000. For validation, experimental data obtained for the smooth pipe are compared with those available in the literature.  相似文献   

19.
This study aims to investigate convective heat transfer inside an annular tube under a constant wall temperature as the outer boundary condition. The outer wall temperature is set to 91 °C, while the other boundaries remained unchanged. For different volume concentrations of Cu as the nanoparticle (0.011, 0.044, and 0.171), the study has been pursued. The acquired data is used to develop a correlation for Nusselt number. The correlation is valid for a Cu/Base Ethylene Glycol nanofluid flow with the volume concentrations between 0.011 and 0.171 in the hydrodynamically fully developed laminar flow regime with Re <160 which is applicable in milli and micro channel heat exchangers.  相似文献   

20.
《Exergy》2002,2(4):314-321
In a heat exchange process, heat transfer and pumping power requirements are the two main considerations. Efforts made to increase heat transfer in a fluid flow usually cause increase in the pumping power requirement. In an effort to avoid inefficient utilization of energy through excessive entropy generation, a thermodynamic analysis of turbulent fluid flow through a smooth duct subjected to constant heat flux has been made in this study. The temperature dependence of the viscosity was taken into consideration in determining the heat transfer coefficient and friction factor. It was shown that the viscosity variation has a considerable effect on both the entropy generation and the pumping power. Pumping power to heat transfer ratio and the entropy generation per unit heat transfer can become very large especially for low heat flux conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号