首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用TiZrNiCu合金作为中间层材料研究了Ti3Al基合金与Ti-6Al-4V合金的瞬间液相(TLP)扩散连接接头成分、组织转变及显微硬度.研究结果表明,连接温度和连接时间对接头成分和组织有较大的影响.随着连接温度的提高和连接时间的延长,接头中元素分布趋于均匀,连接区宽度增大.连接温度为850℃和900℃时,液相的残留使得接头中存在Ti-Cu金属间化合物.当连接温度为950℃,连接时间为30min时,等温凝固的完成使Ti-Cu金属间化合物从接头中消失.随着连接温度的提高和连接时间的延长,接头连接区硬度降低.当连接温度为950℃,连接时间为30min时,接头硬度分布较均匀.  相似文献   

2.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

3.
Abstract

Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content.  相似文献   

4.
Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content.  相似文献   

5.
The objective of this work was to compare the fretting fatigue performance of Ti‐6Al‐4V dovetail specimens on Ti‐6Al‐4V pads having various contact angles typical of engine hardware; 35°, 45° and 55° dovetail angles were considered. The dovetail fixtures were instrumented with strain gages so that the local normal and shear contact forces could be calculated. The contact force hysteresis loops were recorded showing the stick‐slip history. At R= 0.1, gross slip was observed for several thousand cycles followed by partial slip after the average coefficient of friction increased. At R= 0.5, gross slip was present only during the first half cycle. During partial slip, the slope of the shear versus normal force was a function of the dovetail angle. The local contact loads, therefore, differed for the same remotely applied force. Despite this, the fretting fatigue life depended primarily on the remotely applied load not dovetail angle.  相似文献   

6.
Friction surfacing process is employed to deposit metallic coatings, whereby similar and dissimilar material combinations can be realized. The process can be applied as a local repair technology, or the coating material can locally modify the surfaces. One advantage of this process is that the coatings are deposited in solid state without reaching the melting range of materials, thereby avoiding dilution with the substrate. The involved severe plastic deformation under high temperatures alters the microstructure of the coating material, leaving it fully dynamically recrystallized. The current work focuses on deposition of Ti-6Al-4V coatings. For that material, the process parameter rotational speed plays a major role in the material’s response during processing. Two different regimes with a threshold at 2000?min?1 exist, upon which the flow behavior of Ti-6Al-4V significantly differs, affecting among others the coating dimensions. Microstructural analysis reveals that the material is deformed in a high temperature β phase, and the high cooling rates (46.4 Ks?1) lead to martensitic transformation. The β grain size differs in the low and high rotational speed regimes. This study shows that metallurgical processes play an important role in friction surfacing, since they influence all relevant process characteristics, including microstructure, material efficiency and process forces.  相似文献   

7.
In SiC(f)/Ti-6Al-4V composites, the microstructure of the matrix close to the fiber was different from that of the fiber-less material. Microstructure observations show that a layer of fine grains was located adjacent to the fiber, and more dislocations and faults were found in this region. Higher recrystallization nucleation rate due to the undeformed SiC fiber and thermal residual stress induced during cooling from the fabrication temperature caused the microstructural changes of the matrix. Hardness measurement indicates that the matrix in the fiber neighborhood was strengthened, and the strengthening effect decreased with distance away from the fiber.  相似文献   

8.
The titanium alloys are potential materials for high temperature applications in turbine components due to their very high temperature strength and lightweight properties. However, hot corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperature. In the present paper, hot corrosion behavior of Ti-6Al-4V (Ti-31) alloy in different salt environments viz. air, Na2SO4-60% V2O5 and Na2SO4-50% NaCl at 750 °C was studied. The parabolic rate constants were calculated for different environments from the thermo-gravimetric data obtained for the samples and they show that corrosion rate is minimum in air when compared to chemical environment. The scale formed on the samples upon hot corrosion was characterized by using X-ray diffraction (XRD), SEM, and EDAX analysis to understand the degradation mechanisms.  相似文献   

9.
The effect of triple annealing on stress relaxation of Ti-6Al-4V alloy as well as the microstructure after stress relaxation werestudied. The results showed that triple annealing treatment enhanced the resistance of stress relaxation performance, andwhen the temperature was rising, this effect became notable. The stress relaxation deformation mechanism is of dislocationcreep at 400℃ and recovery creep at 600℃.  相似文献   

10.
The behaviour of oxidation at elevated tem-peratures and fretting in the laser-alloyed layer ofTi-6Al-4V with the addition of Pr was studied.The results show that the addition of Pr changes thestructure of oxide scale of Ti-6Al-4V,controls theshort-range diffusion of oxygen to thescale/substrate interface and increases the adhe-sion and ductility of the scale,thus changing theoxidation kinetics and considerably reducingoxidation rate.The analysis of fretting test showsthat the existence of high hardness layer in the al-loyed zone,fine dendrites perpendicular to the sur-face of the high hardness layer and the oxide scaleproduced during fretting at elevated temperaturesare all beneficial to the improvement of wear resist-ance.  相似文献   

11.
This paper presents the results of an investiga-tion of the effect of hydrogen treatment onmicrostructures and tensile and low cycle fatigueproperties of a Ti-6Al-4V cast alloy.The phasetransformation and the refining mechanism of thecast microstructure during the process of hydrogentreatment were studied.It was found that afterhydrogen treatment,the coarse Widmanstttenstructure of the as-cast Ti alloy was transformedinto a very fine and equiaxed α+β microstructurewithout any GBα phase.The tensile strength andductility and the low cycle fatigue life of thehydrogen treated specimens were significantly im-proved.  相似文献   

12.
为研究除氢处理对置氢钛合金组织与性能的影响,对Ti-6Al-4V合金在不同参数条件下进行了置氢与除氢处理,采用光学显微镜分析了置氢-除氢处理过程中Ti-6Al-4V合金微观组织的演化规律,通过室温拉伸试验研究了置氢-除氢处理后Ti-6Al-4V合金的力学性能,探讨了Ti-6Al-4V合金置氢-除氢组织与力学性能之间的相...  相似文献   

13.
Ti-6Al-4V等离子弧焊对接板超塑胀形特性研究   总被引:7,自引:0,他引:7  
通过自由胀形实验研究了等离子弧焊对接板的超塑胀形性能及影响因素.结果表明等离子弧焊对接板具有良好的超塑胀形性能,其极限胀形高度可超过凹模半径.在胀形过程中,焊缝组织发展成球状α 长条状α组织.焊缝和基体间存在变形不均匀性.在同样的胀形条件下,胀形气压有—最佳数值,气压过大或过小均降低极限胀形高度.最后给出了一个应用等离子弧焊对接板进行超塑胀形的实例.  相似文献   

14.
Spherical Ti-6Al-4V powders were prepared using radio-frequency plasma spheroidization. A laser particle size analyser, a scanning electron microscope, an X-ray diffractometer and a Freeman FT4 powder rheometer were used to analyse the granulometric parameters, micro-morphologies, phase constitutions and flow properties of the raw and the spheroidized powders, respectively. The spheroidized powders exhibited an almost 100% degree of sphericity, smooth surfaces, favourable dispersion and narrow particle size distribution under appropriate plasma technological parameters. The average particle size of the spheroidized powders increased slightly as compared with that of the raw powders. In addition, the spheroidized powders exhibited higher conditioned bulk density and improved flow properties (including the dynamic flow properties, aeration, compressibility, permeability and shear properties) as compared with those of the raw powders.  相似文献   

15.
This paper discusses the failure analysis of a Ti-6Al-4V rotating main rotor component and contrasts the perspectives of the design/mechanical engineer and the manufacturing/materials engineer. Cracking initiated at mechanical marks located on the surface of the outer diameter of a planetary post at the transition radius and was propagated by high-cycle fatigue in service. These crack initiation defects were most likely produced by a machining or a surface finishing tool. Fractographic evidence suggests that high stresses were also encountered in service and played a significant role in the premature cracking of these components. The debate centers on whether the components would have failed in the absence of the surface defects. There were several manufacturers of this component, which are compared in this study. The workmanship on the outer diameter of the planetary post at the transition radius of a carrier that had not failed, manufactured by Company B, was superior to that of the two cracked carriers produced by Company A. However, analysis of the service conditions indicates that the components may have been loaded near the yield strength of the material.  相似文献   

16.
Surgical implant-associated bacterial infection is becoming a serious clinical problem.A series of copper-bearing titanium alloy,Ti—6AI—4V—xCu(x = 1,3,5 wt%),were fabricated in the present study in order to reduce the hazard of the bacterial infection problem by means of the strong antibacterial ability of Cu element.The metallography,X-ray diffraction,antibacterial ability,corrosion resistance and cytotoxicity of Ti—6AI—4V—xCu alloys were preliminarily studied with comparison to the commercial medical Ti—6AI—4V alloy.The Ti—6AI—4V—xCu alloys showed obvious antibacterial abilities with good corrosion resistance and cytocompatibility,and the antibacterial role was enhanced with increasing Cu content,which has significant potential for clinical applications as surgical implant materials.  相似文献   

17.
The oxygen concentration in commercial Ti-6Al-4?V alloys was reduced to less than 400?ppm in this study by the method of solid state re-deoxidation, using calcium as a reductant. The concentration of oxygen in the deoxidised Ti-6Al-4?V alloy was 630?ppm at the optimum deoxidation temperature of 1000°C. When the degree of vacuum was increased and re-deoxidation was carried out, the oxygen concentration decreased to 355?ppm. Therefore, it is possible to prepare a Ti-6Al-4?V alloy with an oxygen concentration of less than 400?ppm by using the solid state re-deoxidation method at a high degree of vacuum of 1.5?×?10-6 Torr.  相似文献   

18.
Present experimental investigation is directed toward the optimization of dressing infeed for silicon carbide (SiC) wheel to be employed for grinding difficult-to-machine super alloy Ti-6Al-4V. Grinding wheels are dressed using separate, however, identical 0.75 carat single point diamond dressers at 5, 10, 15, 20 and 25 µm infeed values. Differently dressed wheels are consequently, applied for grinding Ti-6Al-4V under different infeed values of 5, 10 and 15 µm. All the operations have been performed at a constant velocity of 1810 m/min. The performances of the differently dressed SiC wheels are evaluated based on the variations of grinding force components, average surface roughness values, grinding ratio, chip forms and based on the analyses of the micrographs of wheel topologies and also of the ground surfaces, obtained using scanning electron microscope. Following the performance evaluation, the optimized dressing infeed has been found to be 20 µm for the operation range considered herein.  相似文献   

19.
A high resolution experimental capability has been developed to map the phase and magnitude of ultrasonic waves transmitted in a solid. The advancement presented in this paper is provided by laser detection of the ultrasonic energy over a microscopic aperture of approximately 50 m. The system is built around a computer controlled scanner and a confocal Fabry-Perot interferometer, which uses a diode pumped, frequency-doubled Nd:YAG laser as a light source. Wave propagation in the axial and radial directions of a 2.5 diameter bar of textured Ti-6Al-4V was investigated in this study. Measurements were also taken on samples cut with angles between the surface normals and the axis of the bar of 0, 30, 45, 60, and 90 degrees. The work was motivated by the observation of unusually high apparent attenuation in the axial direction of the as-received bar, thought to be associated with phase distortion rather than actual energy loss. The current phase mapping results, using a focused laser spot, show relatively high wavefront distortion and more nonuniform distribution of the transmitted energy in the axial direction. The contribution to attenuation associated with phase cancellation loss was also investigated. These measurements show the laser detected attenuation to be substantially lower than the piezoelectrically measured attenuation. However, even the relative phase insensitivity of focused laser detection approach clearly indicates the attenuation to be strongest in the axial direction. This paper demonstrates the orientation dependence of attenuation stems from scattering effects associated with texturing and the elongated macroscopic grain structure in the mill annealed Ti-6Al-4V bar generated during processing, which may also affect diffraction and beam divergence.  相似文献   

20.
Tool wear in cryogenic turning of Ti-6Al-4V alloy   总被引:1,自引:0,他引:1  
Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. Cryogenic machining with liquid nitrogen as coolant is being investigated by researchers to reduce the cutting zone temperatures and enhance the tool life. The effects of cryogenic cooling have been studied on growth and nature tool wear in the present investigation while turning Ti-6Al-4V alloy bars with microcrystalline uncoated carbide inserts under dry, wet and cryogenic cooling environments in the cutting velocity range of 70-100 m/min. Cryogenic cooling by liquid nitrogen jets enabled substantial improvement in tool life through reduction in adhesion-dissolution-diffusion tool wear through control of machining temperature desirably at the cutting zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号