首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 207 毫秒
1.
Fe_3O_4-水纳米流体对流换热特性的实验研究   总被引:2,自引:0,他引:2  
建立了纳米流体传热性能的测试系统,测试了不同体积分数的Fe3O4-水纳米流体在雷诺数为3 000-10 000内的管内对流换热系数。实验结果表明,在水中添加Fe3O4纳米粒子增大了管内对流换热系数,增加了液体的传热效果;影响纳米流体对流换热系数的主要因素有纳米粒子的浓度及纳米粒子导热系数。  相似文献   

2.
建立了测量纳米流体对流换热系数h的实验系统,在过渡湍流状态下测量了不同碳管含量、不同入口温度以及流速对其对流换热系数的影响,分析了各影响因素的影响程度的大小及作用机理。实验结果表明:碳纳米管的加入改变了水内部的热传递过程,增大了水的管内对流换热系数;相同Re下,随着碳管质量浓度的不断增加,碳管纳米流体的对流换热系数相对基液水显著增加;随着碳管纳米流体入口温度的升高,对流换热系数逐渐增大,增幅变化跟碳管质量浓度有直接关系,例如当碳管质量浓度为0.8、1.0g·L~(-1)时,对流换热系数增幅先增大后减小,而碳管质量浓度达到1.2g·L~(-1)时,对流换热系数增幅加速增大;在碳管质量浓度一定的情况下,纳米流体的流速对h的影响程度比入口温度要大。  相似文献   

3.
微通道内纳米流体的流动与换热特性   总被引:1,自引:0,他引:1  
以不同浓度的TiO2-水纳米流体和水为冷却工质,在扇形微通道热沉内进行流动和换热特性模拟和实验研究. 模拟采用有限体积法的两相混合模型,搭建了能测量纳米流体流量、进出口压降和温度、底面加热膜温度的实验系统;工质在微通道内的雷诺数处于207~465,加热膜热流密度为2 × 106 W/m2 . 结果显示:在扇形微通道内,纳米流体的摩擦阻力系数随Re变化趋势与水相似,且均比水大;随着Re的增大,各工质的摩擦阻力系数下降. 纳米流体的传热性能强于水;随着TiO2纳米颗粒浓度和Re的增大,Nu升高,纳米流体的强化传热能力随之提高.  相似文献   

4.
为了评估碳纳米管在强化传热技术中的应用潜力, 采用实验方法研究水基碳纳米管纳米流体在矩形封闭腔内的自然对流传热性能, 由实验得到瑞利数为1.92×105~2.52×106范围内不同颗粒体积分数的纳米流体沿矩形封闭腔热流方向的平均努塞尔数分布.采用瞬态热线法和旋转黏度仪测量水基碳纳米管纳米流体的导热系数和黏度,探究纳米流体导热系数和黏度与纳米颗粒体积分数的变化关系,分析纳米流体导热系数和黏度对纳米流体自然对流传热的影响.结果表明:在封闭腔内纳米流体沿热流方向的平均努塞尔数随着瑞利数的增加而增大,封闭腔内对流传热不断增强;与水的自然对流传热相比,在低瑞利数(Ra<8.5×105)时,纳米流体自然对流传热效果随着颗粒体积分数的增加而增强;在高瑞利数(Ra>8.5×105)时,体积分数为0.48%的纳米流体的平均努塞尔数比水大,自然对流传热得到强化,而体积分数为1.45%的纳米流体的平均努塞尔数比水小,自然对流传热减弱.  相似文献   

5.
为了解决传统换热工质导热系数和传热性能不高的问题,以Si C-水纳米流体为工质,研究了不同体积分数(0.001%、0.005%、0.01%、0.1%、1%)的Si C-水纳米流体在多孔微通道平行流扁管中的单相流动和换热特性.该扁管矩形通道的水力直径为2.08 mm,实验Re大约为150~5 200.研究结果表明:随着体积分数的增加,纳米流体的Nu呈现先增长后下降的趋势;体积分数为0.01%的Si C-水纳米流体在Re≈5 200时,Nu增长最大,增长率达到80.8%;纳米流体起到强化换热效果的同时,伴随着阻力增加.  相似文献   

6.
准备了4种不同浓度的CuO-乙二醇纳米流体。首先将纳米颗粒与乙二醇液体(50%乙二醇和50%水混合液)直接混合,然后在其添加分散剂,经过超声波振荡和机械搅拌制备了纳米流体。最后再将其注入到实验循环系统当中,进行换热特性的实验测量。结果表明:纳米流体与基液相比其换热效果更加明显,其换热系数伴随着纳米流体质量分数的增加而增大。而当以纳米流体为冷却介质时,纳米流体质量分数越大其泵功的损失也就越大,而且当纳米流体质量分数小于0.50%时其换热效果的提高并不明显。当CuO-乙二醇纳米流体体积分数为0.50%时,压降提高了8.23%而换热系数提高了23.18%,其综合效益最好。  相似文献   

7.
对纳米流体横掠包裹泡沫金属的圆管进行了二维数值模拟,研究了纳米流体与泡沫金属的双重强化换热作用。通过模拟出的流场及温度场分析泡沫金属包裹厚度、雷诺数Re和纳米流体浓度对换热和阻力系数的影响,对比纳米流体与水、泡沫金属管与光管换热的效果。模拟结果表明:包裹泡沫金属的单管换热效果比普通光管好,纳米流体使换热得到有效强化,随纳米流体体积分数增大,其换热系数比水的换热系数高出2%-15%。在研究范围内,Nu数随包裹泡沫金属厚度增加而增大1.4倍-2.2倍,由纳米流体所引起的压降变化不大,而包裹厚度的增加导致压降增幅较大。  相似文献   

8.
研究纳米流体在车用热交换器中的强化传热效果,测试不同纳米粒子体积分数的氧化铝纳米流体在板翅式机油冷却器中的传热和流动特性,并与水、防冻液(乙二醇)及纳米流体基础液体进行对比.试验结果表明,在同一热交换器中,纳米流体的传热系数明显高于其他3种液体.当冷、热侧介质温度为90和120 ℃时,纳米粒子体积分数为5%的纳米流体的传热系数分别比水、乙二醇和基础液体提高6.52%、18.88%和24.62%;当冷、热侧介质温度为120和135 ℃时,体积分数为5%的纳米流体的传热系数比体积分数为1%的纳米流体提高104.72%.在试验条件下,热交换器的换热量随纳米粒子体积分数的增大而增大,但流动阻力并未明显增加,初步证明了纳米流体应用于车用热交换器的可行性.  相似文献   

9.
为了研究氧化物混合纳米流体的粒子混合比对导热系数及粘度的影响,实验采用两步法制备Al2O3-CuO/乙二醇-水混合纳米流体,并用Hot Disk 2500S热常数分析仪及DV3T粘度仪测量了温度范围为20~60℃、20 nm Al2 O3与40 nm CuO颗粒体积比为20:80~80:20的导热系数和粘度值.结果表明,导热系数和粘度均随着小粒径氧化铝颗粒含量的增大而增大,但在粒子比为50:50时导热系数出现最低值.从纳米层结构和颗粒聚集形态分析可知,小粒径颗粒能很好地填充于大粒径颗粒形成的缝隙中,形成"20 nm Al2 O3粒子-基液分子-40 nm CuO粒子"界面纳米层,界面热阻降低,导热系数增大.但是,通过透射电镜图可知在粒子比为50:50时,各颗粒结合不好,形成的团聚体尺寸大,造成局部粒子空白区,导致导热系数下降.最后,分析纳米流体的综合传热性能,Al2 O3-CuO/乙二醇-水混合纳米流体在研究工况内均适合应用于层流流动与传热过程;在紊流时,由于流动扰动强度大,仅当粒子比小于40:60时适合应用于紊流流动与传热过程.  相似文献   

10.
在单相强迫对流情况下,以当量直径为0.55mm、0.91mm、1.38mm,槽道截面形状为矩形和三角形的小尺度流道换热器为实验段,以水和乙二醇溶液为换热介质,进行实验研究,实验的威数范围为300~2500,结果表明:雷诺数相同的情况下,对流换热舰数随当量直径de的增大而增大,Pr数大的乙二醇水溶液的Nu数大于水的舰数,槽道形状对换热器的换热效果有显著影响,三角形槽道的Nu数大于矩形槽道的Nu数,小尺度流道内流体流动的临界雷诺数胁。在700~1200之间。  相似文献   

11.
Convective heat transfer and flow characteristics of Cu-water nanofluid   总被引:15,自引:0,他引:15  
An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nanofluid, a new convective heat transfer correl  相似文献   

12.
在低粘度流体下对扰流子折流杆换热器和折流杆换热器进行了传热性能和阻力性能的对比实验研究。实验以水作为传热介质,热水走壳程,冷水走管程。实验时壳程流体流动状态基本恒定,而管程流体发生变化。通过实验数据的分析关联,得到了加入扰流子后管程对流传热系数的近似计算模型。结果表明,当雷诺数的范围为104 ~5 ×104 时,管程对流传热系数增加的幅度高于阻力增加的幅度,管程对流传热系数和换热器总传热系数分别提高50 % 和10 % 以上。说明对水这样的低粘度流体,在传热湍流区( 即雷诺数大于104 的范围) ,可以采用较大节距的扰流子来强化传热,以取得较佳的综合效果。  相似文献   

13.
用数值解析方法对竖直圆管内热进口段空气对流传热时,浮力引起的自然对流以对传热和流动的影响进行了研究,得到了浮力与主流同向和反向两种场合下的速度、流线、壁面剪切应力及努塞尔特数的分布,并在Pe-│Gr/Re│坐标系中给出了因浮力产生的逆向回流区域。研究结果显示:在加热即浮力在与主流同向时,壁面剪切应力和努塞尔特数随Gr/Re的增大而增大,在较高Gr/Re下和中心出现逆流,对象传热系数在出现逆流处达到局部最大值,传热得到强化;冷却即浮力与主流反向时,壁面剪切应力和努塞尔特数随│Gr/Re│的增大而减小,│Gr/Re│较高时管壁处出现逆流,传热系数则在逆流区后端出现极小值,传热减弱。  相似文献   

14.
圆形液体浸没射流冲击驻点传热的数值模拟   总被引:5,自引:0,他引:5  
对圆形液体浸没层流射流的流场结构和冲击驻点的单相传热进行了数值模拟.考虑的因素为喷嘴直径、喷嘴至冲击板距离、射流速度和加热面尺寸等.计算结果表明:冲击板上涡的位置随Re的增加而远离对称轴.对于充分发展的管形喷嘴而言,驻点换热随射流出口Re的增加和喷嘴直径的减小而增强;在5<Z/d<9内出现峰值,与加热面尺寸无关.  相似文献   

15.
将Helmhotz共振腔应用于换热器来增强换热是一种新的强化换热方法。本文作者通过实验研究了Helmhotz共振腔对换热器的换热强化效果,分析了各种参数对换热效果的影响,得到了对流换热系数及换热强化比随流速的变化规律,结果对工程设计及进一步的研究具有重要的指导意义。  相似文献   

16.
在壳程为低粘度流体水,管程为高粘度油品的操作情 况下对扰流子折流杆换热 器和折流杆换热器进行了传热性能和阻力性能的对比实验研究,并对实验结果和数据进行了分析和关联。对不同长度的扰流子所得到的结果进行了对比,并通过准数关联得出最佳扰流子长度下管程对流传热系数的数学模型。结果表明,在雷诺数为102 ~103( 通常高粘度流体在管内的流动状态为层流) ,随着雷诺数的增加,管程加入扰流子后在大部分区域阻力增加的百分率几乎维持恒定值,而管程对流传热系数和换热器的总传热系数增加的幅度却明显提高。说明当管程为高粘度流体时,在管内加入较长的扰流子来强化传热效果较好  相似文献   

17.
基于欧拉-拉格朗日方法对煤气化辐射废锅内高温气固两相流动传热传质特性进行了三维数值计算,水冷壁上的灰渣沉积过程采用熔渣沉积反弹模型描述。结果表明:灰渣沉积主要发生在辐射废锅的中下部,射流区流速和温度在距离底部5.5 m处迅速衰减,灰渣厚度和导热热阻在此处迅速增加,对流辐射复合换热系数和传热系数在此处迅速下降;随着入口温度的升高,壁面沉积厚度和导热热阻逐渐升高,对流辐射复合换热系数和传热系数由于温差的影响也逐渐升高;随着操作压力的升高,壁面沉积厚度和导热热阻逐渐下降,对流辐射复合换热系数和传热系数逐渐升高。  相似文献   

18.
从热质传递的薄膜理论出发,结合Kern和Seaton提出的渐近污垢模型,研究在紊流状态下污垢形成阶段管内的对流换热特性,得到在考虑结垢传质过程条件下管内紊流对流换热系数的计算式。研究结果表明,污垢的沉积使总的对流换热系数随时间的推移逐渐下降最后趋于一定值,与没有污垢时的情况相比,在污垢形成的初始阶段出现换热增强的现象,但此效果并不明显,且污垢对管内对流换热效果受到管径、管壁温、流速及流体入口温度等因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号