首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探索冰箱冷藏(4℃)条件下蔬菜中硝酸盐和亚硝酸盐含量随时间的变化,对冷藏食品的安全性进行评价.方法 分别采用重氮偶合分光光度法和麝香草酚分光光度法对生菜、菠菜、油麦菜及苦苣4种常用蔬菜在冷藏条件下其亚硝酸盐及硝酸盐的含量变化进行测定.结果 1~4d内,生菜、苦苣中的亚硝酸盐含量随着时间的延长逐渐增加;菠菜、油麦菜中亚硝酸盐含量分别在第2天和第3天达到最大,之后逐渐降低,而菠菜中亚硝酸盐含量在第4天又出现上升趋势.4种蔬菜中亚硝酸盐含量4d中最大值仅为0.419 4 mg/kg(生菜),均<4 mg/kg的限量值.苦苣和油麦菜中硝酸盐含量在1~4d内逐渐上升.菠菜中硝酸盐含量第2天达到418.48 mg/kg,之后又降低至20.83 mg/kg.生菜中硝酸盐含量在第3天达到最大值317.26 mg/kg,之后逐渐下降,但均在安全范围内(432 mg/kg).结论 在4℃下冷藏4d后,4种常见蔬菜均可安全食用.可见,冷藏能有效减缓亚硝酸盐和硝酸盐含量的升高.  相似文献   

2.
Nitrate and nitrite in vegetables on the Danish market: content and intake   总被引:2,自引:0,他引:2  
The contents of nitrate and nitrite in lettuce, leek, potato, beetroot, Chinese cabbage and white cabbage on the Danish market were determined for 3 years in the period 1993-1997 as part of the Danish food monitoring programme. These vegetables are supposed to provide the major contribution to the intake of nitrate from the diet. Results for nitrate and nitrite in fresh and frozen spinach are also shown. The highest content of nitrate was found in lettuce followed by beetroot, Chinese cabbage, fresh spinach, leek, frozen spinach, white cabbage and potatoes. For all the products a great variation in the content of nitrate was found. For lettuce a characteristic variation throughout the year is clearly seen with the highest content in the winter period the lowest content in the summer period. Generally, the content of nitrite was low but in spinach high contents were found, probably due to improper storage conditions during transportation. The intake of nitrate and nitrite from these vegetables is calculated on the basis of two different consumption surveys. For both surveys the average intake of nitrate from the vegetables included in the monitoring programme is estimated to be approximately 40mg day-1, whereas for nitrite the average intake is approximately 0.09mg day-1. The total intake of nitrate and nitrite is estimated to be respectively 61mg day-1 and 0.5mg day-1.  相似文献   

3.
The nitrate and nitrite content of leaf vegetables (Swiss chard, sea beet, spinach and cabbage), “inflorescence” vegetables (cauliflower) and fruit vegetables (eggplant and vegetable marrow) grown with organic fertilizers have been determined by a modified cadmium–Griess method. Samples were purchased from organic food stores as well as collected directly from an organic farm in Madrid (Spain). Nitrate levels were much higher in the leaf vegetables (especially Swiss chard species; average over the different samples and species of 2778.6 ± 1474.7 mg kg? 1) than in inflorescence or fruit products (mean values between 50.2 ± 52.6 and 183.9 ± 233.6 mg kg? 1). Following Swiss chard species, spinach (1349.8 ± 1045.5 mg kg? 1) showed the highest nitrate content, and nitrite was found above the limit of detection in some samples only (spinach, 4.6 ± 1.0 mg kg? 1; sea beet, 4.2 ± 0.7 mg kg? 1 and Swiss chard, 1.2 ± 0.4 mg kg? 1). Some vegetables (spinach, cabbage and eggplant) had lower nitrate content in the samples harvested in summer, showing the influence of climatic conditions on the nitrate levels in a plant. The samples taken directly from the organic farm, with the exception of eggplant, had higher or slightly higher average nitrate values than samples purchased in the organic food stores, ranging from 117 to 1077%.  相似文献   

4.
Levels of nitrate and nitrite in 73 different vegetables, a total of 708 individual samples grouped into leafy, legumes, root and tuber, and fruiting vegetables, which are traded mainly in Hong Kong, were measured. Where available, five samples of each vegetable type were purchased from different commercial outlets during the winter of 2008 and summer of 2009. Levels of nitrate and nitrite were determined by ion chromatography and flow injection analysis, respectively. Nitrate and nitrite levels of all samples ranged <4–6300 and <0.8–9.0 mg?kg?1, respectively. Nitrate concentrations for the different groups, in descending order, were leafy?>?root and tuber?>?fruiting and legume vegetables. More than 80% of vegetables had mean nitrate concentrations less than 2000?mg?kg?1, but mean nitrate concentrations of three types of leafy vegetables, namely Chinese spinach, Shanghai cabbage and Chinese white cabbage, were >3500?mg?kg?1. On the other hand, nitrite concentrations were generally low –?<1?mg?kg?1 on average. Nitrate in vegetables (i.e. Chinese flowering cabbage, Chinese spinach and celery) can be reduced significantly (12–31%) after blanching for 1–3?min, but not after soaking.  相似文献   

5.
Nitrate, nitrite and ascorbic acid (vitamin C) concentrations were determined for spinach (Spinacia oleracea L.) over a 24 h period to determine if light intensity (including dark periods) at time of harvest impacts concentrations in raw vegetables. Nitrate, nitrate and ascorbic acid concentrations varied significantly over the 24 h period and appeared to be related to changes in light intensity. Light intensity at the time an experimental sample is collected may affect the concentration of some constituents that a researcher is studying. Also, nitrate and nitrite concentrations in raw spinach can be reduced by harvesting at the best time of day. The highest nitrate concentrations in spinach occurred in the dark just prior to an increase in light intensity. Ascorbic acid was near its highest level for the 24 h period when the light intensity initially increased, then decreased to its lowest level around 3–6 h later.  相似文献   

6.
Methods for quantitative estimation of nitrate and nitrite were compared. Levels of these ions were measured in vegetables and grain products and effects of processing on nitrate and nitrite levels in carrots were measured. These data allow more accurate estimation of ingestion levels and suggest means to reduce exposure to these ions. High performance liquid chromatography (HPLC) had better precision and recoveries than either a classical Cd-Griess method nitrate or a Griess method for nitrite. Nitrate concentration by HPLC varied greatly within and between vegetables, ranging from 1 μmol/100g in mushrooms to 5000 μmol/100g in celery and averaging 9.7 ± 4.4 μmol/100g in grains. Nitrate levels in vegetables sold as “organic” were not different (p<0.05) from conventional vegetables. No nitrite was detected in either vegetables or grains. Nitrate was unevenly distributed in carrots with the core having the most. Storage of carrots at -18°C for 10 wk did not alter nitrate levels and no nitrite developed. Fifty-seven percent of nitrate was leached into cooking liquid when frozen carrots were boiled. Thirty-two percent of nitrate was lost during canning and 47% of the remainder was in the liquid. No nitrite developed during 10 wk of canned storage.  相似文献   

7.
Sadler DN  Swan JE 《Meat science》1997,45(4):427-437
Pre-rigor beef mince with 2% added salt was stored under CO2 at −1.5 °C (A). The same mince with 100 ppm sodium nitrite was stored under CO2 at 5 °C (B) and −1.5 °C (C), and under vacuum at −1.5 °C (D). Microbiological and sensory analyses were carried out for up to 21 weeks. Indicative storage life was taken as the time for microbial numbers to reach 107 colony forming units per g. Mince stored under regimes B or D attained these numbers by 6 and 14 weeks, respectively; mince stored under regimes A and C had not attained these numbers by the end of the storage trial. Mince stored at 5 °C developed storage flavours of sufficient intensity to be detectable by consumers by 9 weeks storage. In general, the other minces did not develop unacceptable levels of storage or off flavours. Over 90% of the added sodium nitrite had disappeared after 10 weeks of storage, partly through conversion to sodium nitrate. Mince pH was not affected by the storage conditions and remained at about 6.0. The water holding capacity of the pre-rigor mince deteriorated during prolonged storage.  相似文献   

8.
Our objective was to evaluate the antioxidant capabilities of clover (CH) and wildflower honeys (WH) in delaying lipid oxidation in cooked and reheated ground beef patties stored in refrigerated and frozen states. CH and WH (5%, 10%, or 15% w/w) were each mixed separately into ground beef chuck (18% fat) and formed into 30 g patties mixed with 1% salt (w/w). A control (CON) with no honey and a control with sodium tripolyphosphate (STP; 0.25% w/w) were used for comparison. Patties were cooked to 71 °C, overwrapped with oxygen-permeable PVC film and either stored refrigerated (4 °C) for 12 days or frozen (−18 °C) for 45 days. Cook yield, pH and water activity were measured on day 0. On designated sampling days, patties were reheated to 71 °C. Thiobarbituric acid-reactive substances (TBARS) and lipid hydroperoxides (LOOH) were measured spectrophotometrically to assess lipid oxidation. TBARS and LOOH of ready-to-eat (RTE) ground beef patties containing either CH or WH were lower (P < 0.01) than CON patties following storage; however, STP patties had lower TBARS values than honey-containing patties (P < 0.01). WH and CH at 15% were equally effective in suppressing LOOH compared to STP in refrigerated and frozen patties. All honey concentrations improved cook yield, with 10% WH being more effective than STP. Both CH and WH delayed lipid oxidation in RTE ground beef patties stored at 4 °C and −18 °C, with WH decreasing LOOH formation in refrigerated patties as effectively as STP. Honey may be a natural alternative to phosphates to delay lipid oxidation.  相似文献   

9.
A scientific basis for the evaluation of the risk to public health arising from excessive dietary intake of nitrate in Korea is provided. The nitrate () and nitrite () contents of various vegetables (Chinese cabbage, radish, lettuce, spinach, soybean sprouts, onion, pumpkin, green onion, cucumber, potato, carrot, garlic, green pepper, cabbage and Allium tuberosum Roth known as Crown daisy) are reported. Six hundred samples of 15 vegetables cultivated during different seasons were analysed for nitrate and nitrite by ion chromatography and ultraviolet spectrophotometry, respectively. No significant variance in nitrate levels was found for most vegetables cultivated during the summer and winter harvests. The mean nitrates level was higher in A. tuberosum Roth (5150 mg kg(-1)) and spinach (4259 mg kg(-1)), intermediate in radish (1878 mg kg(-1)) and Chinese cabbage (1740 mg kg(-1)), and lower in onion (23 mg kg(-1)), soybean sprouts (56 mg kg(-1)) and green pepper (76 mg kg(-1)) compared with those in other vegetables. The average nitrite contents in various vegetables were about 0.6 mg kg(-1), and the values were not significantly different among most vegetables. It was observed that nitrate contents in vegetables varied depending on the type of vegetables and were similar to those in vegetables grown in other countries. From the results of our studies and other information from foreign sources, it can be concluded that it is not necessary to establish limits of nitrates contents of vegetables cultivated in Korea due to the co-presence of beneficial elements such as ascorbic acid and alpha-tocopherol which are known to inhibit the formation of nitrosamine.  相似文献   

10.
The pyrethroid insecticide permethrin was applied at 2 or 8 mg a.i./kg to wheat, or at 2 mg a.i. permethrin plus 10 mg a.i. piperonyl butoxide/kg to wheat, and the wheat seeds were stored for 20 months under ambient conditions (17–32°C and 40–60% r.h.). Bioassays conducted with adults of Sitophilus oryzae (L) placed on treated wheat samples indicated that all treatments were effective in controlling S. oryzae during storage for at least 20 months. The residues of permethrin and its cis/trans isomers were determined in ground whole wheat and its milling fractions, and the time periods for the initial residue levels to be reduced by half, were evaluated. These ranged from 178 to 200, 217 to 231, and 255 days, in the ground whole grain, bran and flour, respectively. The residues of permethrin in whole ground grain ranged from 1.378 ± 0.190 (day 1) to 0.247 ± 0.026 mg/kg (day 427) in the wheat treated at 2 mg a.i. permethrin/kg, and from 7.400 ± 0.234 (day 1) to 1.294 ± 0.017 mg/kg (day 427) in the wheat treated at 8 mg a.i. permethrin/kg. There was no indication of any effect of piperonyl butoxide on permethrin residue levels. After 35 days of storage 75–80% of permethrin residues were found in the bran portions of seeds subjected to each of the three treatments, while after 427 days of wheat storage at ambient conditions no detectable levels of permethrin residues were found in flour from wheat treated at the rate of 2 mg a.i./kg of wheat.  相似文献   

11.
在不同贮藏温度(0、10、20 ℃)、贮藏方式(未包装、0.04 mm PE保鲜袋包装)条件下贮藏大白菜(Brassica rapa pekinensis)16 d后,采用高效液相色谱法测定大白菜中硝酸盐和亚硝酸盐含量的变化。结果表明,在不同贮藏温度和贮藏方式条件下,硝酸盐和亚硝酸盐的含量随着贮藏时间的延长均呈现先增加、后降
低、再上升的趋势,其中硝酸盐的含量在整个贮藏期间,均在低于432 mg/kg的安全食用范围内;亚硝酸盐含量在20 ℃贮藏条件下贮藏7 d即超过了4 mg/kg的安全摄入量,而其他贮藏条件均在安全食用范围内。大白菜中硝酸盐与亚硝酸盐的含量在贮藏过程中随贮藏温度的降低而显著减少,到贮藏末期(16 d时)20 ℃和10 ℃贮藏大白菜中硝酸盐含量分别是0 ℃贮藏的1.2 倍和1.1 倍,亚硝酸盐含量分别是0 ℃贮藏的1.4 倍和1.2 倍。PE保鲜袋包装有助于减少大白菜在中、低温(10、0 ℃)贮藏中硝酸盐与亚硝酸盐的含量,但在高温(20 ℃)贮藏中其含量增加。因此,建议贮藏大白菜时最好采用PE保鲜袋包装和0~10 ℃的贮藏温度,以保证其硝酸盐和亚硝酸盐含量不超标。  相似文献   

12.
13.
The effect of refrigerated storage (4°C) of raw or processed milk on the stability of cyclopiazonic acid (CPA) in milk was investigated. CPA decreased by 1.4% following 4 days of simulating collecting, storing and transporting of contaminated (1 μg CPA ml−1) raw milk. Storage at 4°C for 21 days, simulating retail milk, moderately reduced the CPA level by 5.8%. A similar trend of CPA decrease was observed in frozen and freeze dried milk stored at −18°C. However, in both products, less than 12% of CPA decreased in spite of a storage period of 140 days. The effect of processing milk on component separation of CPA was also studied. Simulating unsweetened condensed milk production by preheating 4 l contaminated milk to 100°C and concentrating under steam injection to 1.5 l led to a decrease of CPA by 39.7%. In contrast, very little CPA (0.7%) was lost from the production of evaporated milk using low temperature (60°C) heating under vacuum to remove water. CPA was stable in both concentrated and evaporated milks throughout an 8 weeks storage period at 4°C. There was no decrease of CPA during the manufacturing of milk powder by spray drying. Persistence of CPA during the above milk storage and processing methods confirmed the potential of CPA to reach consumers of dairy products when the mycotoxin was carried over into processed milks.  相似文献   

14.
Abstract: Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated pathogens are relatively resistant to chemical treatments, but little is known about their response to irradiation. Leaves of Romaine lettuce and baby spinach were dip inoculated with E. coli O157:H7 and stored at 4 °C for various times (0, 24, 48, 72 h) to allow biofilms to form. After each time, leaves were treated with either a 3-min wash with a sodium hypochlorite solution (0, 300, or 600 ppm) or increasing doses of irradiation (0, 0.25, 0.5, 0.75, or 1 kGy). Viable bacteria were recovered and enumerated. Chlorine washes were generally only moderately effective, and resulted in maximal reductions of 1.3 log CFU/g for baby spinach and 1.8 log CFU/g for Romaine. Increasing time in storage prior to chemical treatment had no effect on spinach, and had an inconsistent effect on 600 ppm applied to Romaine. Allowing time for formation of biofilm-like aggregations reduced the efficacy of irradiation. D10 values (the dose required for a 1 log reduction) significantly increased with increasing storage time, up to 48 h postinoculation. From 0 h of storage, D10 increased from 0.19 kGy to a maximum of 0.40 to 0.43 kGy for Romaine and 0.52 to 0.54 kGy for spinach. SEM showed developing biofilms on both types of leaves during storage. Bacterial colonization of the stomata was extensive on spinach, but not on Romaine. These results indicate that the protection of bacteria on the leaf surface by biofilm formation and stomatal colonization can reduce the antimicrobial efficacy of irradiation on leafy green vegetables. Practical Application: Before incorporating irradiation into the overall GMP/GHP chain, a packer or processor of leafy green vegetables must determine at what stage of processing and shipping the irradiation should take place. As a penetrating process, irradiation is best applied as a postpackaging intervention. Time in refrigerated storage between packaging and processing may alter the antimicrobial efficacy of irradiation. Irradiation on a commercial scale should include efforts to minimize the time delay between final packaging and irradiation of leafy vegetables.  相似文献   

15.
The present paper describes the effects of high-pressure processing on the activity of proteolytic enzymes in cold-smoked salmon and enzyme extracts for pressures up to 300 MPa. The activities of the three enzymes, cathepsin B-like, cathepsin B + L-like and calpains were reduced at all pressure levels of up to 300 MPa (at ca. 9 °C for 20 min) in crude enzyme extracts prepared from cold-smoked salmon. Calpain almost completely inactivated at 300 MPa. High-pressure did not influence general proteolytic activity but activated the enzymes in muscles at higher pressure levels studied until 18 days of storage. An increase in the activity of cathepsin B + L-like and calpain was seen after 12 days of refrigerated storage. Myosin heavy chain was less affected at higher pressure levels (300 MPa) only as shown by Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) of proteins and further refrigerated storage had no obvious effects on proteins.  相似文献   

16.
The survival of E. coli O157:H7 in fermenting foods and its prolonged survival in refrigerated fermented foods is documented. This prompted the study to evaluate survival of E. coli O157:H7 during the fermentation of Datta and Awaze, traditional Ethiopian condiments. Datta was prepared by wet milling a variety of spices along with green or red chilli and fermenting it by lactic acid bacteria. Awaze is a slurry made of red pepper, garlic and ginger to which various other spices were added and fermented by lactic acid bacteria (LAB) and yeasts. The Datta or Awaze slurry was separately inoculated with three strains of E. coli O157:H7 and the fermentation was allowed to proceed at ambient (20–25°C) temperatures for 7 days. When fermenting Datta or Awaze was initially inoculated at low inoculum level (3 log cfu/g), the test strains were not recovered after 24 h of fermentation. At higher initial inoculum level (6 log cfu/g), however, counts of the test strains in Datta at day 7 were less by about 1.5 log unit than the initial inoculum level. In fermenting Awaze, all test strains were completely eliminated in 7 days. The pH of the fermenting green and red Datta was reduced from 5.2 to 4.4 and that of Awaze dropped from 4.9 to 3.8 during this time. In another experiment, the fermented products were separately inoculated with the E. coli O157:H7 test strains at levels of 6 log cfu/g and incubated at ambient and refrigeration (4°C) temperatures for 7 days. In fermented Datta, two of the three strains were not recovered by enrichment after 6 days of storage at ambient temperatures. In fermented Awaze, all strains were below countable levels at day 5, but could still be recovered by enrichment at day 7. At refrigeration storage, counts of the test strains in Datta and Awaze products were <3 log cfu/g at day 7. The inhibition of our E. coli O157:H7 test strains in Datta and Awaze may be due to the antimicrobial activity of spices and other metabolites produced by LAB which may be effective at low pH.  相似文献   

17.
不同贮藏蔬菜中亚硝酸盐变化的研究   总被引:19,自引:0,他引:19  
本研究以大白菜、甘蓝、白萝卜为试验材料,研究了室温、低温、腌制三种贮藏蔬菜中亚硝酸盐含量的变化及其形成的机理。结果表明:室温、腌制两种贮藏方法的初期都出现“亚硝峰”。形成“亚硝峰”的原因依贮藏方法而异,室温贮藏蔬菜中“亚硝峰”的形成是由于采摘后菜体内硝酸还原酶的活性增强导致蔬菜内硝酸盐还原成亚硝酸盐;腌制贮藏蔬菜中“亚硝峰”的形成是由于发酵过程中杂菌所致。腌制菜中“亚硝峰”的峰值大大高于室温贮藏,并超过FAO/WUO规定的ADI值,腌制后期亚硝酸盐含量在安全食用范围。室温、低温贮藏蔬菜中亚硝酸盐含量的最高值小于ADI值,可以放心食用。  相似文献   

18.
Changes in certain microbiological, physicochemical, and sensory parameters of kefir were studied during refrigerated storage. Kefir batches were prepared using 1% and 5% added kefir grains, and samples for analysis were taken 24 h after inoculation and then after 2, 7, 14, 21, and 28 days of storage at 5 ± 1 °C. After fermentation for 24 h after inoculation, lactobacilli and lactococci were present at levels of 108 cfu/ml, and yeasts and acetic acid bacteria were present at levels of 105 and 106 cfu/ml, respectively. The lactic acid flora decreased by about 1.5 log units between days 7 and 14 and then stabilized at that level. Yeast and acetic acid bacterial counts, lactose, and pH all remained constant over the storage period, while the total fat content and dry matter decreased. The percentage inoculate did exert an influence, and the sample batches made using 1% added kefir grains had higher lactic acid bacterial counts, lactose, and pH, while the sample batches made using 5% added kefir grains had higher yeast and acetic acid bacterial counts and viscosity. The total fat and dry matter contents were similar in both sample batches. Sensory analysis of the kefir samples revealed maximum acceptability levels in the first 2 days of storage.  相似文献   

19.
Microbiological and sensory changes of vacuum-packaged ‘gravad’ rainbow trout slices were studied during storage at 3 and 8 °C. At the time of spoilage, after 27 and 20 days of storage at 3 and 8 °C, respectively, both mesophilic viable counts (MVC) and psychrotrophic viable counts (PVC) reached 106–107cfu/g at 3 °C and 107–108 cfu/g at 8 °C. H2S-producing bacteria constituted a high proportion of the PVCs and lactic acid bacteria (LAB) counts were lower than the other determined bacterial counts. Sensory scores decreased with increasing MVC and PVC. The judges considered samples unfit for human consumption at MVC and PVC levels exceeding 106 and 107 cfu/g for samples stored at 3 and 8 °C, respectively. At respective levels of 107 and 108 cfu/g, most of the samples were deemed unfit. The main reasons for sensory rejection at both storage temperatures were the lack of the typical product odour or an ammonia off-odour and colour change to dark violet. The shelf-lives of the rainbow trout slices based on microbiological and sensory analyses were 20 days and 18 days at 3 and 8 °C, respectively.  相似文献   

20.
Nitrate and nitrite concentrations were determined for sweet basil and scallions over 24 h to determine if time of sampling or harvest impacts concentrations in raw vegetables. Also, nitrate and nitrite concentrations were determined separately for various edible parts of these plants. Basil had significant changes in nitrate and nitrite concentrations over a 24 h period. Nitrate was correlated to changes in light intensity with a 3 h lag time. The highest nitrate concentrations in basil (2777 ppm) occurred around 3 h after the light intensity peaked and had low values (165–574 ppm) during the dark period. The scallion nitrate and nitrite concentrations were always low but nitrate showed a peak a few hours before sunrise. Nitrate and nitrite concentrations in some raw vegetables may be reduced by harvesting at the best time of day for each type of plant. Nitrate concentrations were different in the edible plant parts tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号