首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

2.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

3.
Structural studies were performed for the ternary RIr3B2 compounds (R=Ce and Pr) from as cast samples. The crystal structure of the ternary boride CeIr3B2 (CeCo3B2 structure type, space group P6/mmm, a=5.520(3) Å, c=3.066(2) Å, Z=1, V=80.91 Å3, ρx=15.154 g cm−3) was refined to R1=0.0470, wR2=0.1240 from single-crystal X-ray diffraction data. The new ternary boride PrIr3B2 was found to be isostructural with the CeIr3B2 compound. Its lattice parameters a=5.5105(2) Å, c=3.1031(1) Å were obtained from a Rietveld refinement of X-ray powder diffraction data.  相似文献   

4.
The Nd11Pd4In9 compound was prepared by arc melting of pure metals under an argon atmosphere. Crystal structure was refined from X-ray single crystal diffractometer data (space group Cmmm, a = 14.843(3), b = 22.284(3), c = 3.7857(6) Å, Z = 2, RI = 0.0584, 653 F2 values). It has own structure type and together with Mn2AlB2, Cr3AlB4, Mo2FeB2 and Lu5Ni2In4 structure types belongs to homological series based on AlB2 and CsCl structure types with common formula Rm+nM2nXm.  相似文献   

5.
A new mixed-valence iron phosphate Na1.25Mg1.10Fe1.90(PO4)3 has been synthesized as single crystals by a flux technique and its structure has been refined from X-ray data to a residual R1 = 0.032. The compound crystallizes in the monoclinic space group C2/c with the parameters: a = 11.7831(3) Å, b = 12.4740(3) Å, c = 6.3761(2) Å, β = 113.643(2)° and Z = 4. The structure belongs to the alluaudite structural type, and thus it obeys to the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The X(2) and X(1) sites are occupied by sodium while the M(1) and M(2) sites feature a statistical distribution of iron and magnesium.

Additional information about the cation distribution has been extracted from a Mössbauer spectroscopy study which confirmed the mixed valency of the compound. A magnetic susceptibility study has also been undertaken and has shown the compound to be antiferromagnetic with a Neel temperature of about 35 K.  相似文献   


6.
A new modification of the compound Ba3YB3O9, β phase, has been attained through solid phase transition from phase at 1125–1134 °C. β-Ba3YB3O9 crystallizes in the hexagonal space group with cell parameters a=13.0529(8) Å, c=9.5359(9) Å. The crystal structure of -Ba3YB3O9 has been determined from powder X-ray diffraction (XRD) data. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=8.8%, and Rwp=11.8% with Rexp=5.65%. In its structure, the isolated [BO3]3− anionic groups are parallel to each other and distributed layer upon layer along the c-axis. The Y atoms are six-coordinated by the O atoms to form octahedra. The result of IR spectrum confirmed the existence of [BO3]3− triangular groups.  相似文献   

7.
The effects of milling and doping NaAlH4 with TiCl3, TiF3 and Ti(OBun)4, and of cycling doped NaAlH4 have been investigated by infrared (IR) and Raman spectroscopy and X-ray powder diffraction. Milling and doping produce similar effects. Both decrease the crystal domain size (900 Å for milled and 700 Å for doped, as compared to 1600 Å for unmilled and undoped NaAlH4) and increase anisotropic strain (by a factor >2.5, mainly along c). They also influence structure parameters such as the axial ratio c/a, cell volume and atomic displacement amplitudes. They show IR line shifts by 15 cm−1 to higher frequencies for the Al–H asymmetric stretching mode ν3, and by 20 cm−1 to lower frequencies for one part of the H–Al–H asymmetric bending mode ν4, thus suggesting structural changes in the local environment of the [AlH4] units. The broad ν3 bands become sharpened which suggests a more homogeneous local environment of the [AlH4] units, and there appears a new vibration at 710 cm−1. The Raman data show no such effects. Cycling leads to an increase in domain size (1200–1600 Å), IR line shifts similar to doped samples (except for TiF3: downward shift by 10 cm−1) and a general broadening of the ν3 mode that depend on the nature of the dopants. These observations support the idea that some Ti diffusion and substitution into the alanate lattice does occur, in particular during cycling, and that this provides the mechanism through which Ti-doping enhances kinetics during re-crystallisation.  相似文献   

8.
Single crystals of the quaternary thiospinel Ag1.41(1)Cr1.47(5)Sn2.52(5)S8 have been obtained by heating stoichiometric mixtures of elemental metals and sulfur at 750 °C. Structural analysis by single crystal X-ray diffraction shows that the above phase crystallizes in the space group with a = 10.4142(3) Å (R1 = 0.0156 and wR2 = 0.0416). The Ag-deficiency has been confirmed by solving the structures of crystals prepared in different batches and was observed to vary slightly between crystals. Magnetic studies on a monophasic powder sample with a nominal composition of Ag1.63CrSn3S8 indicates anti-ferromagnetic ordering at low temperature. The high temperature susceptibility leads to a magnetic moment of 3.45 B.M. suggesting that chromium exists predominantly in a trivalent state.  相似文献   

9.
Two ternary alkali earth silver bismuthides, CaAgBi and BaAg1.837Bi2, have been synthesized by solid-state reactions of the corresponding metals in welded Nb tubes at high temperature. Their structures have been established by single-crystal X-ray diffraction studies. CaAgBi crystallizes in the hexagonal space group P63mc (No.186) with cell parameters of a = b = 4.8113(4) Å, c = 7.8273(9) Å, V = 156.92(3) Å3, and Z = 2. BaAg1.837Bi2 belongs to tetragonal space group P4/nmm (No.129) with cell parameters of a = b = 4.9202(2) Å, c = 11.628(1) Å, V = 281.50(3) Å3, and Z = 2. The structure of CaAgBi is of the LiGaGe type, and features a three-dimensional four-connected (3D4C) anionic network with Ca2+ encapsulated in the channels formed by [Ag3Bi3] six-membered rings. BaAg1.837Bi2 is isostructural with CaBe2Ge2, a variant of the tetragonal ThCr2Si2-type structure. Its structure exhibits a three-dimensional anionic network built of (0 0 1) and (0 0 2) puckered [Ag2Bi2] layers interconnected via additional Ag–Bi bonds along the c-axis. BaAg1.837Bi2 is metallic based on band structure calculations.  相似文献   

10.
The new compound Li2VGeO5 with a layered structure has been synthesized at 580 °C via the hydrothermal method. The compound crystallizes in the space group P4/n of the tetragonal system with two formula units in a cell of dimensions a=6.5187(9) Å, c=4.5092(9) Å (T=298 K), V=191.61(5) Å3. The structure is composed of layers made of repeating [(VO5)(GeO4)]1− units. Li+ ions reside between the layers. The magnetic susceptibility data show an antiferromagnetic coupling below 5 K with C=0.47 emu K mol−1, and θ=−13 K with μeff=1.89μB for each Li2VGeO5 unit.  相似文献   

11.
The crystal structure of intermetallic compound Gd6Cr4Al43 has been investigated by means of X-ray diffraction data (Ho6Mo4Al43 structure type, space group P63/mcm, Pearson symbol hP106, a = 10.9144(7) Å, c = 17.7361(13) Å).

SQUID magnetic measurements carried out for the title compound point to the existence of two antiferromagnetic phase transitions observed at TN1 = 19.0(1) K and TN2 = 6.8(1) K, respectively.  相似文献   


12.
It is shown that oxygen-stabilized compounds Zr3NiOx (x=0.4, 0.6, 0.8, 1.0) interact with hydrogen at ambient temperature and pressure forming saturated hydrides with a filled Re3B-type structure. The hydrogen storage capacity decreases with increasing oxygen content from 6.65 H/f.u. for Zr3NiO0.4 down to 5.58 H/f.u. for Zr3NiO1.0. A slight decrease of the crystal lattice parameters of the parent compounds and a substantial increase of these parameters for the saturated hydrides were observed with increasing oxygen content. The partial hydrogen-induced lattice expansion, ΔV/at. H, increases from 2.333 Å3 for Zr3NiO0.4H6.65 to 3.047 Å3 for Zr3NiO1.0H5.58. Joint Rietveld refinement using X-ray and neutron powder diffraction data showed a distribution of deuterium atoms on similar positions as in oxygen-free Zr3FeDx and Zr3CoDx. The oxygen atoms move during deuteration from the octahedral site to one trigonal bi-pyramidal and two tetragonal interstices that are fully occupied in the saturated deuterides jointly by deuterium and oxygen. After deuterium desorption the oxygen atoms fully return to the initial octahedral site.  相似文献   

13.
Two novel polyphosphides, NaP5 and CeP5, were prepared in a BN crucible by the reaction of elemental components under a high pressure of 3 GPa at 800–950 °C. The X-ray structural analysis showed that NaP5 crystallizes in an orthorhombic space group Pnma with a=10.993(2) Å, b=6.524(1) Å, c=6.903(1) Å, Z=4 and CeP5 in the monoclinic group P21/m with a=4.9143(5) Å, b=9.6226(8) Å, c=5.5152(4) Å, β=104.303(6)°, Z=2. The crystal structure of NaP5 consists of a three-dimensional framework 3[P5]1− constructed by P---P bonds among four crystallographically inequivalent phosphorus sites, with large channels hosting the sodium cations, while CeP5 is a layered compound containing 2[P5]3− polyanionic layers that are separated by Ce3+ ions. NaP5 exhibits the diamagnetic behavior, while the temperature-dependent magnetic susceptibility of CeP5 essentially follows the Curie–Weiss law.  相似文献   

14.
Ternary R3Pd4Ge4 samples (R=Nd, Eu, Er) were investigated by means of X-ray single crystal (four circle diffractometer Philips PW1100, MoK radiation) and powder diffraction (MX Labo diffractometer, CuK radiation). The Er3Pd3.68(1)Ge4 compound belongs to the Gd3Cu4Ge4 structure type, space group Immm, a=4.220(2) Å, b=6.843(2) Å, c=14.078(3) Å, R1=0.0484 for 598 reflections with Fo>4σ(Fo) from X-ray single crystal diffraction data. No ternary R3Pd4Ge4 compound when R is Nd or Eu was observed. The Nd and Eu containing samples appeared to be multiphase. Ternary phases observed in the Nd3Pd4Ge4 and Eu3Pd4Ge4 alloys and their crystallographic characteristics are the following: NdPd2Ge2, CeGa2Al2 structure type, space group I4/mmm, a=4.3010(2) Å, c=10.0633(2) Å (X-ray powder diffraction data); NdPd0.6Ge1.4, AlB2 structure type, space group P6/mmm, a=4.2305(2) Å, c=4.1723(2) Å (X-ray powder diffraction data); Nd(Pd0.464(1)Ge0.536(1))2, KHg2 structure type, space group Imma, a=4.469(2) Å, b=7.214(2) Å, c=7.651(3) Å, R1=0.0402 for 189 reflections with Fo>4σ(Fo) (X-ray single crystal diffraction data); Eu(Pd,Ge)2, AlB2 structure type, space group P6/mmm, a=4.311(2) Å, c=4.235(2) Å; EuPdGe, EuNiGe structure type, space group P21/c, and ternary compound with unknown structure (X-ray powder diffraction data).  相似文献   

15.
Single crystals of KCr0.8Al0.2Mo2O8 were prepared and investigated by the X-ray diffractometer technique. It shows a structure type related to trigonal KAIMo2O8, monoclinic NaCrMo2O8 or orthorhombic KInMo2O8, space group C2h6C2/c; a=17.445 Å, b=5.649 Å, c=8.997 Å, β=119.37°; Z=4. KCr0.8Al0.2Mo2O8 is characterized by isolated MoO4 tetrahedra, isolated (Cr/Al)O6 octahedra and a distorted square antiprism around K+. The crystal structure is discussed with respect to those of related compounds.

Zusammenfassung

Einkristalle von KCr0.8Al0.2Mo2O8 wurden synthetisiert und mit Vierkreisdiffraktometertechnik röntgenographisch untersucht. Sie zeigen einen mit trigonal-KA1Mo2O8, monoklin-NaCrMo2O8 oder orthorhombisch-KlnMo2O8 verwandten Strukturtyp, Raumgruppe C2h6C2/c; a=17,445 Å, b=5,649 Å, c=8,997 Å, β=119,37°; Z=4. KCr0.8Al0.2Mo2O8 zeichnet sich durch isolierte MoO4-Tetraeder, isolierte (Cr/Al)O6-Oktaeder und ein verzerrtes quadratisches Antiprisma um K+ aus. Die Kristallstruktur wird mit solchen verwandter Verbindungen diskutiert.  相似文献   


16.
The structural properties of the compounds in the tin-rich part of the dysprosium–tin system have been studied by X-ray powder diffraction. The crystal structures of six compounds DySn2+x (0 < x < 1) have been characterized. There are four compounds with known structural types: DySn2 with the ZrSi2 structure, Dy3Sn7 with the Gd3Sn7 structure, Dy2Sn5 with the Er2Ge5 structure, DySn3 with the DyGe3 structure and two compounds characterized by new body-centred orthorhombic types (Immm): Dy5Sn11 (a = 4.411 Å, b = 42.50 Å and c = 4.328 Å) and Dy5Sn13 (a = 4.341 Å, b = 48.05 Å and c = 4.405 Å) which result from various insertions of AuCu3 and Po slabs into the ZrSi2 structure. The relationships and structural evolution are discussed.  相似文献   

17.
The structural and magnetic properties of perovskite oxides La0.7Ca0.3−xKxMnO3 (0 ≤ x ≤ 0.15) have been investigated to explore the influence of the A-site cation size-disorder (σ2). The materials were prepared by the solid-state method and then characterized by X-ray diffraction (XRD). The XRD data have been analyzed by Rietveld refinement technique. For K doping concentration x ≤ 0.075, the samples crystallize in the orthorhombic structure, while for x ≥ 0.1, the structure becomes rhombohedral. The variation of the magnetization M as a function of the applied magnetic field μ0H reveals the presence of a structural distortion leading to a reduction of the magnetization at low μ0H values. When increasing μ0H, the structural distortion decreases and for a high applied magnetic field, the M (μ0H) curves saturate indicating the disappearance of the structural distortion. The influence of K doping concentration and the applied magnetic field on the magnetocaloric properties has been considered. A large magnetic-entropy change (|ΔSM|  5 J/kg K) is obtained in all samples at Curie temperatures between 270 and 280 K for an applied magnetic field of 3 T. These results show that these materials can be used as candidates for magnetic refrigerants near room temperature.  相似文献   

18.
In our investigation of Co-rich alloys in the ternary U–Co–Sn system, we have identified three intermetallic compounds with composition UCo2Sn, UCo4Sn and UCo5Sn, respectively. The existence and the crystal structure of the first compound, already known in the literature, have been confirmed, while the latter two compounds have been identified for the first time. The crystal structure of these compounds was determined by X-ray diffraction methods, performed both on powders (all samples) and single crystals (UCo4Sn and UCo5Sn). The crystal data are as follows (lattice constants from Guinier powder patterns): UCo2Sn [UPd2Sn-type, orthorhombic, oP16-Pnma, a = 9.402(3), b = 4.321(1), c = 6.615(2) Å], UCo4Sn [MgCu4Sn-type, cubic, , a = 6.992(2) Å] and UCo5Sn [CeCu4.38In1.62-type, orthorhombic, oP56-Pnnm, a = 10.250(1), b = 16.012(2), c = 4.837(1) Å]. The physical properties of the compounds have been studied by electric transport (1.5–300 K), heat capacity (1.8–40 K) and magnetic measurements (1.8–300 K). The magnetisation data reveal weakly paramagnetic behaviour (with weak low temperature upturn due to parasitic impurity phases) in all the three alloys and absence of long-range magnetic ordering, despite the presence of uranium and a substantially high concentration of cobalt. The results for UCo2Sn are in agreement with earlier reports in the literature. The magnitudes of the coefficients of the linear term in the heat capacity and the T2 term in the low temperature resistivity track the room temperature magnetisation.  相似文献   

19.
The studies of the thermoelectric power and band structure calculations for CeNi4Si are reported. These studied are supported by magnetic susceptibility, electrical resistivity, specific heat and X-ray photoemission spectroscopy measurements. CeNi4Si is paramagnetic down to 2 K and follows the Curie–Weiss law with μeff = 0.52μB/f.u. and the paramagnetic Curie temperature θP = −2 K. This effective paramagnetic moment is lower than the free Ce3+ value. The obtained values for the f occupancy nf and for the coupling Δ of the f level with the conduction states are in good agreement with the values found for mixed valence compounds. Below the Fermi energy the total density of states contains mainly the d states of Ni atoms. The narrow peaks of the f states of Ce atoms were found above the Fermi level. CeNi4Si is characterized by γ = 16 mJ mol−1 K−2 and θD = 335 K.  相似文献   

20.
The structure and anelastic properties of Fe-27 at.%Ge alloy are studied. Long-term annealing of the as-cast alloy at 1273 K leads to homogenising and several transformations take place below 873 K. These low temperature transitions are studied by several methods: X-ray diffraction, calorimetry, vibrating-sample magnetometry and internal friction, and are related to magnetic transitions in the different phases. A high stability of the hexagonal (D019) phase at room temperature is recorded. The hexagonal β (B81) phase is also detected in the alloy at room temperature, while the presence of the ′ and phases is doubtful. A broad internal friction relaxation peak with the relaxation strength of Δ = 0.0036, the activation energy of about 1.78 eV and the preexponential relaxation time of τ0 = 2 × 10−17 s was discovered and classified as the Zener peak in both the and β phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号