首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporins are integral membrane proteins occurring in mammals, plants, and microorganisms, which serve as channels that permit the bidirectional passage of water through cellular membranes. Higher plants contain abundant levels of aquaporins in both the tonoplast and plasma membrane. Aquaporins contain six transmembrane segments with three surface loops located at the apoplastic face of the membrane and two loops at the cytosolic side. In this study, we probed the topology of plasma membrane aquaporins to determine the effects of divalent cations on aquaporin conformation, and to identify structural features that distinguish plasma membrane intrinsic proteins from tonoplast intrinsic proteins. Plasma membrane vesicles from storage tissue of Beta vulgaris L. were subjected to limited proteolysis, and proteolytic fragmentation patterns were detected using affinity-purified antibodies recognizing aquaporins of 31-kDa. In its native membrane-associated state, the 31-aquaporin band, PMIP31, was refractory to proteolysis by trypsin. However, mercuric compounds specifically induced a conformational change resulting in the exposure of a proteolytic cleavage site and formation of a unique 22-kDa proteolytic fragment (p22). N-terminal sequence analysis of p22 established its identity as an aquaporin-derived fragment. Topological studies using sealed right-side-out plasma membrane vesicles established that the proteolytic cleavage site is located at surface loop C, the second apoplastic loop, immediately preceding the sequence Gly-Gly-Gly-Ala-Asn. The Gly-Gly-Gly-Ala-Asn-X-X-X-X-Gly-Tyr motif of loop C and a 14 amino acid motif in apoplastic loop E, Thr-Gly-Ile/Thr-Asn-Pro-Ala-Arg-Ser-Leu/Phe-Gly-Ala-Ala-Ile/Val-Ile/ Val-Phe/Tyr-Asn are completely conserved in all known higher plant aquaporins of plasma membrane origin and are not present in any of the known tonoplast intrinsic proteins. These results demonstrate that the two highly conserved plasma membrane intrinsic protein surface loops are structural features that clearly distinguish plasma membrane from tonoplast aquaporins.  相似文献   

2.
In polarized cells intracellular sorting of plasma membrane proteins occurs to a large extent at the trans-Golgi network, giving rise to vesicles destined for distinct plasma membrane domains. This review discusses the several pathways, both direct and indirect, which lead to protein incorporation into the correct cell surface, as well as the mechanisms involved. Proteins contain signals which direct their incorporation into the distinct vesicles destined for plasma membrane microdomains. Specific coat proteins are involved in vesicle assembly and are likely to play a role in the generation of discrete vesicle populations. Molecules involved in vesicle docking and fusion may also add specificity to the targeting process.  相似文献   

3.
Antidiuretic hormone (ADH) increases toad bladder granular cell apical membrane osmotic water permeability (Pf) by insertion of cytoplasmic vesicles containing water channels into the apical membrane. Termination of ADH stimulation results in endocytosis of water channel-containing membrane. In previous work, we have purified water channel-containing vesicles and demonstrated that they contain 12 major protein bands when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On the basis of vectorial labeling studies of granular cells and purified vesicles, we have proposed previously that vesicle proteins of 55, 53, and 17 kDa are ADH water channel components. In this report, we have purified and analyzed these three proteins using a combination of SDS-PAGE, peptide mapping, amino acid composition, and amino-terminal analyses. The 55- and 53-kDa proteins are distinct protein species possessing a high degree of structural similarity. Both possess a large content of cysteine. The 17-kDa protein appears to be a proteolytic fragment of the 53-kDa protein. None of these three proteins is phosphorylated or contains large amounts of covalently linked carbohydrate. ADH-elicited Pf is inhibited by the organic mercurial reagent fluorescein mercuric acetate (FMA). Exposure of water channel-containing vesicles to FMA labels selectively four vesicle proteins of 92, 55, 53, and 29 kDa while reducing vesicle Pf by 82%. The combination of FMA and 2-mercaptoethanol or exposure to another mercurial reagent, n-ethylmaleimide, does not inhibit vesicle Pf. Together, these data provide additional evidence for the role of the 55- and 53-kDa proteins as components of the ADH water channel. These candidate ADH water channel proteins are distinct from a 28-kDa candidate water channel protein (CHIP 28) isolated recently from human erythrocyte membranes and kidney proximal tubule by Agre and co-workers (Preston, G. M., Carroll, T. P., Guggino, W. B., and Agre, P. (1992) Science 256, 385-387).  相似文献   

4.
Neuroendocrine PC12 cells contain small microvesicles that closely resemble synaptic vesicles in their physical and chemical properties. Two defining characteristics of synaptic vesicles are their homogeneous size and their unique protein composition. Since synaptic vesicles arise by endocytosis from the plasma membrane, nerve terminals and PC12 cells must contain the molecular machinery to sort synaptic vesicles from other membrane proteins and pinch off vesicles of the correct diameter from a precursor compartment. A cell-free reconstitution system was developed that generates vesicles from PC12 membrane precursors in the presence of ATP and brain cytosol and is temperature dependent. At 15 degrees C, surface-labeled synaptic vesicle proteins accumulate in a donor compartment, while labeled synaptic vesicles cannot be detected. The block of synaptic vesicle formation at 15 degrees C enables the use of the monoclonal antibody, KT3, a specific marker for the epitope-tagged synaptic vesicle protein, VAMP-TAg, to label precursors in the synaptic vesicle biogenesis pathway. From membranes labeled in vivo at 15 degrees C, vesicles generated in vitro at 37 degreesC had the sedimentation characteristics of neuroendocrine synaptic vesicles on glycerol velocity gradients, and excluded the transferrin receptor. Therefore, vesiculation and sorting can be studied in this cell-free system.  相似文献   

5.
Annexin I is a member of the annexin family of calcium-dependent membrane binding proteins. The core domain of these proteins is similar in all annexins but the N-terminal domain is specific for each member. This domain is thought to regulate annexin function through phosphorylation. In annexin I, Ser-27 is one of the amino acids that can be phosphorylated by protein kinase C. Phosphorylations are thought to regulate some annexin I functions by increasing calcium requirement. Two mutants were prepared in this study: S27E and S27A proteins. The first mimics phosphorylation while the second prevents phosphorylation at residue 27. Wild-type annexin I and S27A mutant protein showed the same calcium dependence for phospholipid vesicles aggregation, while S27E mutant protein showed a higher calcium requirement and a low maximal extent of aggregation. By contrast, liposome binding and self-association required identical calcium concentrations for the wild-type and the two mutant proteins. To examine whether the regulation observed is due to modification of the N-terminal structure, we investigated conformational changes by using two approaches. Firstly we analysed proteinase sensibility. Limited proteolysis of the N-terminal tail showed similar patterns for the three proteins. Using drastic conditions of proteolysis, we observed strong resistance of the core domain to digestion in the presence of calcium. Secondly, since Ser-27 is located on the N-terminal domain that contains a tryptophan located at position 12, the fluorescence of this residue was analysed during Ca2+-binding of wild-type annexin I and S27E mutant protein. The results demonstrated that Ca2+ induces a slight change in the Trp environment of wild-type annexin I, corresponding to a burying of the residue. No changes in fluorescence features were observed with S27E mutant protein. The results obtained show that phosphorylation of the N-terminal tail plays a regulatory role in phospholipid vesicle aggregation, which is based on a mechanism distinct from protein self-association. This phosphorylation induces a conformational change in the tail probably related to aggregation property.  相似文献   

6.
We have assembled a micropipette aspiration assay to measure membrane destabilization events in which large (20-30 microns diameter) unilamellar vesicles are manipulated and exposed to membrane destabilizing agents. Single events can be seen with a light microscope and are recorded using both a video camera and a photomultiplier tube. We have performed experiments with a wild-type fusion peptide from influenza virus (X31) and found that it induces pH-dependent, stochastic lysis of large unilamellar vesicles. The rate and extent of lysis are both maximum at pH 5; the maximum rate of lysis is 0.018 s-1 at pH 5. An analysis of our data indicates that the lysis is not correlated either to the size of the vesicles or to the tension created in the vesicle membranes by aspiration.  相似文献   

7.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated integral membrane protein expressed almost exclusively in neuronal and neuroendocrine tissues. This protein forms a ternary complex with vesicle-associated membrane protein (VAMP) and syntaxin, which is thought to regulate the fusion of plasma and vesicle membranes during exocytosis. We report the identification of SNAP-25 expressed in sea urchin sperm. Sea urchin SNAP-25 shares greater identity with mammalian SNAP-25 than with mammalian SNAP-23, a ubiquitously expressed homologue believed to regulate membrane fusion in non-neuronal tissues. Sea urchin sperm contain a single exocytotic vesicle, the acrosomal vesicle, whose contents are exposed during the acrosome reaction. Fusion of the plasma membrane with the acrosomal vesicle membrane at multiple points (vesiculation) results in the release of SNAP-25 with the shed acrosome reaction vesicles. A complex containing SNAP-25, syntaxin, and VAMP is present in sperm, as detected by affinity chromatography and immunoprecipitation. Although this complex is present prior to the acrosome reaction, the amount of complex increases over 4-fold following acrosomal exocytosis. These findings support the involvement of SNAP-25 in the invertebrate sperm acrosome reaction, possibly through increased association with VAMP and syntaxin driving the fusion of plasma and acrosomal membranes.  相似文献   

8.
The shedding of membrane vesicles from the cell surface is a vital process considered to be involved in cell-cell and cell-matrix interactions and in tumor progression. By immunoelectron microscopic analysis of surface replicas of 8701-BC human breast carcinoma cells, we observed that membrane vesicles shed from plasma membranes contained densely clustered gelatinase B [matrix metalloproteinase 9 (MMP-9)], beta1 integrins, and human lymphocyte antigen class I molecules. By contrast, alpha-folate receptor was uniformly distributed on the smooth cell membrane and shedding areas. Both cell surface clustering of selected molecules and membrane vesicle release were evident only when cells were cultured in the presence of serum. Vesicle shedding occurred preferentially at the edge or along narrow protrusions of the cell. Specific accumulation of proMMP-9 and active forms of MMP-9 in shed vesicles was also demonstrated by gelatin zymography. In addition, Western blotting analysis showed the presence of a large amount of proMMP-9/tissue inhibitor of metalloproteinase 1 complex. The release of selected areas of plasma membranes enriched with MMP-9 and beta1 integrins indicates that membrane vesicle shedding from tumor cells plays an important role in the directional proteolysis of the extracellular matrix during cellular migration. The presence of human lymphocyte antigen class I antigens suggests a mechanism for tumor cells to escape from immune surveillance.  相似文献   

9.
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane components between different vesicle populations. No appreciable fusion was detected between populations of non-sonicated phospholipid vesicles incubated in aqueous salt (NaCl) solutions. Mixing of vesicle membrane components via diffusion of phospholipid molecules between vesicles was observed in populations of negatively charged phosphatidylglycerol vesicles but similar exchange diffusion was not detected in populations of neutral phosphatidylcholine vesicles. Incubation of sonicated vesicle populations at temperatures close to or above the phospholipid transition temperature resulted in an increase in vesicle size and mixing of vesicle membrane components as determined by a gradual change in the thermotropic properties of the mixed vesicle population. The interaction of purified phospholipid vesicles was also examined in the presence of myristic acid and lysolecithin. Our results indicate that while these agents enhance mixing of vesicle membrane components, in most cases mixing probably proceeds via diffusion of phospholipid molecules rather than by fusion of entire vesicles. Increased mixing of vesicle membrane components was also produced when vesicles were prepared containing a purified hydrophobic protein (myelin proteolipid apoprotein) or were incubated in the presence of dimethylsulfoxide. In these two systems, however, the evidence suggests that mixing of membrane components results from the fusion of entire vesicles.  相似文献   

10.
In the multinucleate cap rays of the green alga Acetabularia mediterranea the cell surface increases dramatically within a short time period during the final stages of coenocytotomic cleavage. In early stages of cyst formation the cytoplast is traversed by numerous large and prolate cleavage vesicles which are characterized by typical columellar or spinous coat structures. The cleavage vesicles are closely associated with the surface of plastids and, to a lesser degree, of mitochondria. This intimate association seems to be mediated by regularly spaced, densely stained intermembranous cross-bridge structures and is maintained throughout cleavage. These cleavage vesicles contain a finely fibrillar material structurally similar to the hyaline layer of mucilage that fills the space between the plasma membrane and cell wall. They line up with invaginations of the plasmalemma and vacuole membranes and, together with smaller vesicles interspersed, constitute preformed "perforation lines" for the final separation of the coenoblast portions. Equidistantly spaced plaques of attachment of such vesicles with surface membrane are described. We hypothesize (a) that the cleavage vesicle membrane is the immediate precursor to the new postcoenocytotomic surface membrane, (b) that the cleavage vesicle coat structures are integrated into the subsurface coat of the plasma membrane, (c) that growth of the laterally attached cleavage vesicles by intussusception of small fuzzy-coated vesicles is confined to their "free ends," (d) that the intermembranous cross-bridge elements are related to bristle coat structures and play a role in the establishment of the cleavage lines, and (e) that the coenocytotomic cleavage process is organized so that adjacent plastids are separated in a way that guarantees the inclusion of several plastids in each cyst.  相似文献   

11.
A role for dynamin in clathrin-mediated endocytosis is now well established. However, mammals express three closely related, tissue-specific dynamin isoforms, each with multiple splice variants. Thus, an important question is whether these isoforms and splice variants function in vesicle formation from distinct intracellular organelles. There are conflicting data as to a role for dynamin-2 in vesicle budding from the TGN. To resolve this issue, we compared the effects of overexpression of dominant-negative mutants of dynamin-1 (the neuronal isoform) and dynamin-2 (the ubiquitously expressed isoform) on endocytic and biosynthetic membrane trafficking in HeLa cells and polarized MDCK cells. Both dyn1(K44A) and dyn2(K44A) were potent inhibitors of receptor-mediated endocytosis; however neither mutant directly affected other membrane trafficking events, including transport mediated by four distinct classes of vesicles budding from the TGN. Dyn2(K44A) more potently inhibited receptor-mediated endocytosis than dyn1(K44A) in HeLa cells and at the basolateral surface of MDCK cells. In contrast, dyn1(K44A) more potently inhibited endocytosis at the apical surface of MDCK cells. The two dynamin isoforms have redundant functions in endocytic vesicle formation, but can be targeted to and function differentially at subdomains of the plasma membrane.  相似文献   

12.
The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p-dependent vesicle formation assay.  相似文献   

13.
A site-directed photocrosslink approach was used to elucidate components that interact directly with ADP- ribosylation factor (ARF)-GTP during coat assembly. Two ARF mutants were generated that contain a photolabile amino acid at positions distant to each other within the ARF molecule. Here we show that one of the two positions specifically interacts with coatomer subunit beta both on Golgi membranes and in isolated coat protein complex type I (COPI)-coated vesicles. Thus, a direct and GTP-dependent interaction of coatomer via beta-coat protein complex (COP) with ARF is involved in the coating of COPI-coated vesicles. These data implicate a bivalent interaction of the complex with the donor membrane during vesicle formation.  相似文献   

14.
(1) The effect of the incorporation of cholesterol upon the distribution of various molecular species of phosphatidylcholine across the bilayers of mixed sonicated liposomes (vesicles) has been studied with 31P-MNR. (2) The outside-inside ratio of both saturated and unsaturated phosphatidylcholine species was not much affected by the incorporation of up to 30 mol% cholesterol. Above 30 mol% cholesterol the outside-inside ratio strongly increased for phosphatidylcholines with cis unsaturated fatty acid chains. In contrast the outside-inside ratio of trans unsaturated and fully saturated phophatidylcholine species was either not affected or decreased by the incorporation of more than 30 mol% cholesterol. (3) a simple relationship between the size of the vesicle and the linewidth of the 31P-NMR resonance is described. From the measured linewidths the sizes of the various cholesterol containing vesicles have been obtained. It is found that incorporation of 0-30 mol% cholesterol does not significantly affect the size of the vesicle whereas above 30 mol% cholesterol does not significantly affect the size of the vesicle whereas above 30 mol% cholesterol the size of all phosphatidylcholine vesicles sharply increases. The increase in size is the largest for the more saturated phosphatidylcholine species. (4) From the outside-inside ratio and the size of the vesicle the composition of the outer and inner layer of the mixed vesicles could be obtained. Below 30 mol% cholesterol the composition of outer and inner layer is nearly identical. Above 30 mol% cholesterol the distribution of lipid across the bilayer of all visicles becomes assymetric with a disporportionately larger amount of cholesterol present in the inside monolayer.  相似文献   

15.
Polymorphonuclear neutrophils (PMN) contain multiple distinct secretory compartments that are sequentially mobilized during cell activation. Complement receptor type 1 (CR1) is a marker for a readily mobilizable secretory vesicle compartment, which can undergo exocytic fusion with the plasma membrane independently of secretion of traditional granule contents. The basis for the formation of these distinct compartments is incompletely understood. Primary and secondary granules are generated directly from the Golgi complex during different stages of development of the cell, obviating the need for sorting signals for proper packaging of their constituents. To determine whether the secretory vesicles are formed in a similar manner, we studied a stable rat basophilic leukemia cell line (RBL-CR1) transfected with a plasmid containing the cDNA of human CR1 driven by a viral promoter. The CR1 was present primarily intracellularly in small vesicles resembling the CR1 storage pools in resting PMN. Activation of RBL-CR1 resulted in translocation of intracellular CR1 to the plasma membrane, with mobilization requirements different from those of the classical RBL granules. Thus, in RBL-CR1, continuously synthesized CR1 is stored and upregulated in much the same way as in PMN. This suggests that differential timing of gene expression is not essential for proper storage of CR1 and that other sorting mechanisms are involved, which can be studied in RBL-transfectants.  相似文献   

16.
Chromogranins A and B (CGA and CGB), the major proteins of the secretory vesicles of the regulated secretory pathway, have been shown to aggregate in a low pH and high calcium environment, the condition found in the trans-Golgi network where secretory vesicles are formed. Moreover, CGA and CGB, as well as several other secretory vesicle matrix proteins, have recently been shown to bind to the vesicle membrane at the intravesicular pH of 5.5 and to be released from it at a near physiological pH of 7.5. The pH- and Ca(2+)-dependent aggregation and interaction of chromogranins, as well as several other matrix proteins, with the vesicle membrane are considered essential in vesicle biogenesis. Therefore, to gain further insight into how vesicle matrix proteins find their way into the secretory vesicles, the pH- and Ca(2+)-dependent aggregation and vesicle membrane binding properties of the vesicle matrix proteins were studied, and it was found that most of the vesicle matrix proteins aggregated in the presence of Ca2+ at the intravesicular pH of 5.5. Furthermore, most of the vesicle matrix proteins bound not only to the vesicle membrane but also to CGA at pH 5.5, with the exception of a few matrix proteins that appeared to bind only to CGA or to vesicle membrane. Purified CGB was also shown to interact with CGA at pH 5.5. The extent and Ca(2+)-sensitivity of the aggregation of vesicle matrix proteins lay between those of purified CGB and CGA, CGB aggregation showing the highest degree of aggregation and being the most Ca2+ sensitive at a given protein concentration. Hence, in view of the abundance of chromogranins in secretory vesicles and their low pH- and high calcium-dependent aggregation property, combined with their ability to interact with both the vesicle matrix proteins and the vesicle membrane, CGA and CGB are proposed to play essential roles in the selective aggregation and sorting of potential vesicle matrix proteins to the immature secretory vesicles of the regulated secretory pathway.  相似文献   

17.
Rapid membrane recycling in nerve terminals is required to maintain rapid synaptic transmission. Following the fusion of synaptic vesicles with synaptic plasma membranes, recycling can occur via clathrin-coated vesicles (CCVs) [1-3]. The fate of these vesicles is uncertain: they could simply uncoat and acquire other proteins from the cytosol to regenerate synaptic vesicles or they may fuse with endosomal structures from which synaptic vesicles could then bud. We have purified both CCVs and synaptic vesicles from rat brain, and measured the ability of these vesicle fractions to take up the excitatory neurotransmitter glutamic acid. We found that the normalized levels of glutamate uptake by the two types of vesicle were very similar. For each vesicle fraction, uptake required ATP and Cl- and could be fully inhibited by the specific vacuolar proton pump (v-ATPase) inhibitor concanamycin. We suggest that this ability to refill vesicles with neurotransmitter at the earliest intermediate on the recycling pathway - the CCV - may allow uncoated vesicles to immediately enter the releasable pool without sacrificing the quantal nature of neurotransmitter release.  相似文献   

18.
The antigen-binding receptor expressed on most T lymphocytes consists of disulfide-linked clonotypic alphabeta heterodimers noncovalently associated with monomeric CD3gamma,delta,epsilon proteins and disulfide-linked zeta zeta homodimers, collectively referred to as the T cell antigen receptor (TCR) complex. Here, we examined and compared the disulfide linkage status of newly synthesized TCR proteins in murine CD4(+)CD8(+) thymocytes and splenic T cells. These studies demonstrate that CD3delta proteins exist as both monomeric and oligomeric (disulfide-linked) species that differentially assemble with CD3epsilon subunits in CD4(+)CD8(+) thymocytes and splenic T cells. Interestingly, unlike previous results on glucose trimming and TCR assembly of CD3delta proteins in splenic T cells (Van Leeuwen, J. E. M., and K. P. Kearse (1996) J. Biol. Chem. 271, 9660-9665), we found that glucose residues were not invariably removed from CD3delta glycoproteins prior to their assembly with CD3epsilon subunits in CD4(+)CD8(+) thymocytes. Finally, these studies show that calnexin associates with both monomeric and disulfide-linked CD3delta proteins in murine T cells. The data in the current report demonstrate that CD3delta proteins exist as both monomeric and disulfide-linked molecules in murine T cells that differentially associate with partner TCR chains in CD4(+)CD8(+) thymocytes and splenic T cells. These results are consistent with the concept that folding and assembly of CD3delta proteins is a function of their oxidation state.  相似文献   

19.
We have investigated, both experimentally and theoretically, the efflux of carboxyfluorescein (a self-quenching fluorescent dye) from vesicles of different sizes and lipid species (POPC, DOPC) after having added the bee venom peptide melittin. This comprises quantitative analyses regarding the extent of lipid-associated peptide, the mode as well as the temporal progress of dye release and the possible leakage mechanism. Our results indicate a graded efflux characterized by a single-pore retention factor reflecting the formation of pores whose lifetimes are rather small (millisecond range). The observed fluorescence signal arising from the dequenching of effluent dye has been converted to the number of pore openings over the course of time. All the resulting curves exhibit a pronounced slowing down of the pore formation rate revealing two distinct relaxation steps at about 20 and 200 s, respectively, being largely independent of vesicle type and peptide to lipid ratio. The pore formation rate itself increases in proportion to the amount of membrane bound peptide. We give a quantitative account of our experimental findings based on a novel reaction scheme applicable to any of our various liposome systems. It implies that the pore formation rate is controlled by a passage through two intermediate monomeric peptide states. These states are thought to become well populated in the initial stage of lipid bilayer perturbation, but would practically die out after some time owing to a restabilization of the membrane system.  相似文献   

20.
The outer membrane of Borrelia hermsii has been shown by freeze-fracture analysis to contain a low density of membrane-spanning outer membrane proteins which have not yet been isolated or identified. In this study, we report the purification of outer membrane vesicles (OMV) from B. hermsii HS-1 and the subsequent identification of their constituent outer membrane proteins. The B. hermsii outer membranes were released by vigorous vortexing of whole organisms in low-pH, hypotonic citrate buffer and isolated by isopycnic sucrose gradient centrifugation. The isolated OMV exhibited porin activities ranging from 0.2 to 7.2 nS, consistent with their outer membrane origin. Purified OMV were shown to be relatively free of inner membrane contamination by the absence of measurable beta-NADH oxidase activity and the absence of protoplasmic cylinder-associated proteins observed by Coomassie blue staining. Approximately 60 protein spots (some of which are putative isoelectric isomers) with 25 distinct molecular weights were identified as constituents of the OMV enrichment. The majority of these proteins were also shown to be antigenic with sera from B. hermsii-infected mice. Seven of these antigenic proteins were labeled with [3H]palmitate, including the surface-exposed glycerophosphodiester phosphodiesterase, the variable major proteins 7 and 33, and proteins of 15, 17, 38, 42, and 67 kDa, indicating that they are lipoprotein constituents of the outer membrane. In addition, immunoblot analysis of the OMV probed with antiserum to the Borrelia garinii surface-exposed p66/Oms66 porin protein demonstrated the presence of a p66 (Oms66) outer membrane homolog. Treatment of intact B. hermsii with proteinase K resulted in the partial proteolysis of the Oms66/p66 homolog, indicating that it is surface exposed. This identification and characterization of the OMV proteins should aid in further studies of pathogenesis and immunity of tick-borne relapsing fever.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号