首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
For the purpose of bio-electronics, bacteriorhodopsin was crystallized into two habits through liquid-liquid-diffusion, namely individual needles of up to 1.9 mm in length and needle bunch-like clusters of up to 4.9 mm in total length. In both the reduced gravity experiments performed, the morphology of the individual needles (crystal form A) had improved in terms of sharp needle edges and compact needle packing, compared to the parallel ground controls. For the long duration wide range low gravity condition in the "Diffusion-controlled Crystallization Apparatus for Microgravity (DCAM)" on Mir (STS-89 up), needle bunches on average were longer there than on the ground, while the compactness of the clusters, i.e. the average ratio of clustered length to clustered width was the reverse. Some exceptionally large individual needles were grown in DCAM. For the "Commercial Protein Crystallization Facility (CPCF)" in short duration high definition microgravity condition during a science mission of the Space Shuttle Discovery (STS-95), size and shape of the individual needles were homogeneous and superior to those of both the parallel ground controls and the results in DCAM. In CPCF, the average volume of the individual needles in suspension was increased by 50 % in microgravity compared to those in the ground control.  相似文献   

2.
Silicalite-1 zeolite was synthesized from clear solutions prepared from tetraethylorthosilicate, tetrapropylammonium hydroxide and water. Crystallization was performed in a unit composing 30 miniautoclaves programmed to heat to 145 or 155°C and to quench sequentially. The synthesis under microgravity condition was conducted aboard the MAXUS 4 sounding rocket. A reference experiment under normal gravity was executed using the same temperature and time profiles. The evolution of the particle size populations was determined using X-ray scattering. The microgravity condition significantly slowed aggregation but did not change the overall aggregation mechanism. Surprisingly, aggregation of the smallest entities, expected to be the least influenced by absence of convection, were most retarded under microgravity conditions. A considerable fraction of the original nanoslabs persisted even at the end of crystallization. An explanation for this unusual microgravity effect was found in the observation of strong physical interaction between groups of individual particles.  相似文献   

3.
The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.  相似文献   

4.
Undecalcified (n = 140) and decalcified (n = 11) bone fragments were treated with either collagenase (to remove collagen portion; undecalcified n = 64, decalcified n = 11) or EDTA (to remove mineral portion; n = 76) under the reduced gravity environment on US Space Shuttle mission STS-57. The fragments were initially stored in Dulbecco's phosphate buffer solution. After orbit had been established, fragments were exposed to either a neutral buffered collagenase or EDTA solution. Reactions were terminated (neutral buffered formalin for collagenase, 21% CuSO4 5H2O for EDTA) before reentry to earth's atmosphere. Differences in bone samples mass from before flight to after flight were measured. EDTA-treated sample mass was corrected for CuSO4 content. Flight and matched ground (gravitational control) sample showed similar EDTA-induced loss of mineral mass. Collagenase treatments, however, appeared to be more effective in flight samples compared to ground control samples. The flight-exposed, collagenase-treated samples showed significantly more loss of mass than did ground samples. The microgravity environment appeared to promote proteolytic reactions in bone more than the EDTA decalcification reaction.  相似文献   

5.
Nucleation in Metallic Melt on the Ground and under Elevated Gravity   总被引:1,自引:0,他引:1  
The expressions for nucleation rate in metallic melt on the ground and under elevated gravity have been derived theoretically and the effects of gravity and elevated gravity on nucleation rate have been discussed. A comparison of nucleation rate under microgravity with those on the ground and under elevated gravity has also been made  相似文献   

6.
Equations for the amplitude- and phase-frequency characteristics of oscillating bubble systems in a closed measuring cell are derived which are in a good qualitative agreement with experiments performed under ground and microgravity conditions (STS-95 and STS-107). Using calibration experiments with the pure solvent water it was possible to obtain the complex surface elasticity modulus from the respective experimental characteristics. The comparison of the high frequency limits of the measured elasticity with the theoretical dilational elasticities calculated according to the respective adsorption isotherm shows good agreement at small surfactant concentrations but large discrepancies at higher concentrations.  相似文献   

7.
Results for the interfacial friction factor and relative interfacial roughness on the gas-liquid interface are reported for an air-water annular flow in a small inner diameter tube (9.53 mm i.d.). The film structure was obtained through processing the time trace signal of film thickness measurements using conductance probes. The interfacial friction factor and the wave height were altered through changing the gravity level and gas Reynolds number. It was found that the wave height decreased with increasing the gas Reynolds number. The wave height in microgravity is less than half of that in normal gravity, while the friction factor was about 10% smaller in microgravity than that in normal gravity. It was shown that the annular two-phase flow friction factor decreased less dramatically as the relative interfacial roughness decreased compared to the single-phase case. It is interesting to note that the interfacial shear stress values at microgravity were very close (or even larger than) those at normal gravity. This was attributed to the thicker substrate at microgravity.  相似文献   

8.
We present ground reference measurements of the directional scattering properties of conifer needles. As the development of multiangular remote sensing instruments sets a growing need for reliable ground reference measurement techniques and databases, there is an increasing demand for data on the spectral properties of conifer needles in forest reflectance modeling and the inversion of physically based models. These data are scarce due to technical and conceptual problems related to measuring thin needles, and the needle directional spectral properties are currently nonexistent even for single wavelengths. We present results from measuring the monochromatic backscattering of Scots pine needles in a controlled laboratory environment; we feel these results of the hot spot signatures of individual conifer needles are unique. The experiment was conducted at 1,064 nm with an instrument constructed specifically for backscatter measurement, based on techniques commonly used for laser backscattering measurements and CCD photometry. Strong backscattering peaks near 0 degrees were observed for the needles, the amplitude of the brightening being up to approximately 40%.  相似文献   

9.
The phenomena of two-liquid phase separations are significantly influenced by the gravity on the ground because of the difference in the densities of the constituent components, particularly, in the case of liquid alloys with critical mixing. In this paper, experimental techniques and results are reported for the measurements of the electrical resistivity for typical liquid alloys with critical mixing, such as Bi−Ga, under microgravity by the use of a rocket S520-19 belonging to ISAS (Institute of Space and Astronautical Science, Japan). It was found that the temperature coefficient of the electrical resistivity, on cooling of the homogeneous liquid phase, increases with the approach to the critical temperature. This trend under microgravity by the rocket experiment is more pronounced compared to the trend of the reference experiment on the ground. In addition, the supercooling of homogeneous liquids under microgravity is larger than that on the ground. These differences are explained by the difference in the degree of the growth of concentration fluctuations; the concentration fluctuations are far greater under microgravity than on the ground. Therefore, it is found to be very important to study the process and the critical phenomena of two-liquid phase separations under microgravity. Measurement of electrical resistivity is an effective method to obtain informations about the process, the critical phenomena, and the supercooling of two-liquid phase separations in liquid alloys with critical mixing. Paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

10.
A visual observation of liquid–gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.  相似文献   

11.
Bubble Dynamics in Nucleate Pool Boiling on Thin Wires in Microgravity   总被引:2,自引:0,他引:2  
A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behavior and heat transfer in pool boiling phenomenon both in normal gravity and in microgravity. A thin platinum wire of 60 μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. The fluid is R113 at 0.1 MPa and subcooled by 26°C nominally for all cases. Three modes of heat transfer, namely single-phase natural convection, nucleate boiling, and two-mode transition boiling, are observed in the experiment both in microgravity aboard the 22nd Chinese recoverable satellite and in normal gravity on the ground before and after the space flight. Dynamic behaviors of vapor bubbles observed in these experiments are reported and analyzed in the present paper. In the regime of fully developed nucleate boiling, the interface oscillation due to coalescence of adjacent tiny bubbles is the primary reason of the departure of bubbles in microgravity. On the contrary, in the discrete bubble regime, it’s observed that there exist three critical bubble diameters in microgravity, dividing the whole range of the observed bubbles into four regimes. Firstly, tiny bubbles are continually forming and growing on the heating surface before departing slowly from the wire when their sizes exceed some value of the order of 10−1 mm. The bigger bubbles with about several millimeters in diameter stay on the wire, oscillate along the wire, and coalesce with adjacent bubbles. The biggest bubble with diameter of the order of 10 mm, which was formed immediately after the onset of boiling, stays continuously on the wire and swallows continually up adjacent small bubbles until its size exceeds another critical value. The same behavior of tiny bubbles can also be observed in normal gravity, while the others are observed only in microgravity. Considering the Marangoni effect, a mechanistic model about bubble departure is presented to reveal the mechanism underlying this phenomenon. The predictions are qualitatively consistent with the experimental observations.  相似文献   

12.
Besides space laboratories for in-orbit experimentation, Earth based facilities for laboratory experimentation are of paramount importance for the enhancement on liquid bridge knowledge. In spite of the constraints imposed by simulated microgravity (which force to work either with very small size liquid bridges or by using the Plateau tank technique, amongst other techniques), the availability and accessibility of Earth facilities can circumvent in many cases the drawbacks associated with simulated microgravity conditions. To support theoretical and in orbit experimental studies on liquid bridges under reduced gravity conditions, several ground facilities were developed at IDR. In the following these ground facilities are briefly described, and main results obtained by using them are cited.  相似文献   

13.
Aim of the present study was to investigate on the possible alterations induced by on ground modeled microgravity on ion-water transport proteins at cellular level. For the purpose we used astrocytes, C6 line, neurons (NT2 line from human teratocarcinoma) and testicular cells (germ cells, Sertoli cells, and Leydig cells; primary cultures from trypsinised prepuberal pig testes). Modeled microgravity was achieved by a desktop 3D Random Positioning Machine, cultures were kept rotating for 30′, 1h and 24h. After 30′, immunopositivity for the antibodies to Na+/K+ATPase and Na+/K+/Cl? co-transporters was greatly diminished, the plasma membrane appeared to be altered, and the mitochondria inner cristae were disrupted. Immunostaining to the antibody to the water channel aquaporin 4 was very bright. After 1h at random rotation immunostaining for the heat shock protein Hsp27 was visible, After 24h, immunostaining for the ion transport proteins was again like that of the controls, plasma membrane and the mitochondria were again normal. Immunostaining for aquaporin 4 become again similar to that of the controls. We conclude that low gravity induces only transient alterations in the cell’s transmembrane ion-water transport: the cells are able to adapt to the gravity vector changes in few hours.  相似文献   

14.
Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of cell cycle progression and the rate of ribosome biogenesis (this latter taken to estimate cell growth) have been studied using morphometric markers or parameters evaluated by light and electron microscopy in real microgravity on the International Space Station (ISS) and in ground-based simulated microgravity, using the Random Positioning Machine and the Magnetic Levitation Instrument. Results showed enhanced cell proliferation but depleted cell growth in both real and simulated microgravity, indicating that the two processes are uncoupled, unlike the situation under normal gravity on Earth in which they are strictly co-ordinated events. It is concluded that microgravity is an important stress condition for plant cells compared to normal ground gravity conditions.  相似文献   

15.
A new experimental setup for the study of bubble coalescence and bubble jet interactions in microgravity conditions is presented. The section consists of a cavity full of liquid containing two bubble injectors whose separation distance and relative orientation angle can be controlled. Injection of bubbles is based on the generation of a slug flow in a capillary T-junction, which allows a control of bubble size and velocity by means of liquid and gas flow rates. Individual and collective behaviour of bubbles injected in the cavity has been studied. On ground results on the individual trajectories, maximum distance reached, and the delimitation between turbulence and buoyancy regions are presented. The influence on these results of the inclination angle of one injector with respect to gravity has also been considered. A good knowledge of bubble jets behaviour in microgravity will enhance the development of space technologies based on two-phase systems.  相似文献   

16.

Background

There are two techniques for puncturing an arteriovenous fistula: one where the needle is inserted bevel up and then rotated to a bevel down position, and another where the needle is inserted bevel down. The aim of this study was to compare these two methods of needle insertion on minimum compression time required for hemostasis after needle removal.

Methods

This was a prospective, randomized, cross-over, blinded, single-center, routine care study. Each patient's average post-dialysis puncture site compression time was determined during a 2-week baseline period while using bevel-up access puncture. Subsequently, minimum post-dialysis puncture-site compression time was determined during each of two sequential follow-up periods, during which fistula puncture was done with needles inserted bevel up or down, respectively. The order of treatments (bevel up or bevel down insertion) was randomized. During each follow-up period, the minimum compression time necessary to avoid bleeding on needle removal was determined by progressively shortening the compression time. Puncture-associated pain was also assessed as prepump and venous pressures and ability to achieve desired blood flow rate during the dialysis session.

Results

Forty-two patients were recruited. The baseline compression time after needle removal averaged 9.99 ± 2.7 min During the intervention periods, the minimum compression time was on average 10.8 min (9.23–12.4) when the access needles had been inserted bevel down versus 11.1 min (9.61–12.5) when the access needles had been inserted bevel up (p = 0.72). There was no difference in puncture-associated pain between the two insertion techniques, and no difference in prepump or venous pressures or ability to achieve the desired blood flow rate during the dialysis session.

Conclusion

Bevel-up and bevel-down needle orientation during arteriovenous fistula puncture are equivalent techniques in terms of achieving hemostasis on needle removal, and puncture-associated pain.  相似文献   

17.
The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl\(_{6}^{\mathrm {4-}}\) in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.  相似文献   

18.
Experiments of fine-particle plasma have been performed using a drop experiment facility in order to analyze the ordering and behavior of fine particles under microgravity and during the change of gravitational conditions. Aligned fine particles in the radial directions were observed under microgravity, although they were aligned in the vertical direction under gravity. It has been suggested that the vertical alignment of fine particles under gravity is caused by the mutual influence between positive ion flow and negative fine particles following the deformation of plasma.  相似文献   

19.
Ground experiment under microgravity is very essential because it can verify the space enabling technologies before applied in space missions. In this paper, a novel ground experiment system that can provide long duration, large scale and high microgravity level for the six degree of freedom (DOF) spacecraft trajectory tracking is presented. In which, the most gravity of the test body is balanced by the buoyancy, and the small residual gravity is offset by the electromagnetic force. Because the electromagnetic force on the test body can be adjusted in the electromagnetic system, it can significantly simplify the balancing process using the proposed microgravity test bed compared to the neutral buoyance system. Besides, a novel compensation control system based on the active disturbance rejection control (ADRC) method is developed to estimate and compensate the water resistance online, in order to improve the fidelity of the ground experiment. A six-DOF trajectory tracking in the microgravity system is applied to testify the efficiency of the proposed compensation controller, and the experimental simulation results are compared to that obtained using the classic proportional-integral-derivative (PID) method. The simulation results demonstrated that, for the six-DOF motion ground experiment, the microgravity level can reach to 5 × 10?4 g. And, because the water resistance has been estimated and compensated, the performance of the presented controller is much better than the PID controller. The presented ground microgravity system can be applied in on-orbit service and other related technologies in future.  相似文献   

20.
The templated syntheses of TMA2Sn3S7 and TBA2Sn4S9 (where TMA is tetramethylammonium and TBA is n-tetrabutylammonium) microporous layered tin(iv) sulfides have been carried out under both microgravity (μG) and earth (1G) conditions in order to elucidate the influence of gravity on the self-assembly and crystal-growth processes of this class of materials. The μG experiments were conducted on board the May 1996 Endeavour STS-77 NASA space-shuttle flight. It was determined that the long-range ordering of the porous layers and the population of defects but not the short-range ordering within the layers is influenced by gravity. Bulk and surface crystallinity, smoothness of crystal faces, optical quality, crystal habits, registry of the porous layers, and accessible void volume to adsorbates were found to be improved in the space-grown crystals. This is probably because the forces associated with the organization of the porous layers are expected to be weak and sensitive to the elimination of buoyancy-driven convective flows and Stokes sedimentation effects in a microgravity environment. One can draw an analogy to the weak forces between protein macromolecules and the established effect of microgravity on improving the diffraction quality of crystals harvested in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号