首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A significant improvement in sensing speed over the half-VDD bit-line precharge sensing scheme is obtained by precharging the bit line to approximately 2/3 VDD. The 2/3-VDD sensing scheme also results in higher-bit-line capacitance, asymmetrical bit-line swing, and higher power consumption. However, the speed advantage of 2/3-VDD sensing may outweigh the disadvantages and can significantly improve DRAM performance. For the unboosted word-line case, symmetrical bit-line swing can be retained by limiting the bit-line downward voltage swing through a clamping circuit added to the sense amplifier, resulting in almost no loss of stored charge in a cell. The authors show that the 2/3-VDD sensing with a limited bit-line swing has several distinct advantages over the half-VDD sensing scheme and is particularly suitable for high-performance high density CMOS DRAMs  相似文献   

2.
A high-speed small-area DRAM sense amplifier with a threshold-voltage (VT) mismatch compensation function is proposed. This sense amplifier features a novel hierarchical data-line architecture with a direct sensing scheme that uses only NMOS transistors in the array, and simple VT mismatch compensation circuitry using a pair of NMOS switching transistors. The layout area of the sense amplifier is reduced to 70% of that of a conventional CMOS common I/O sense amplifier due to the removal of PMOS transistors from the array. The readout time is improved to 35% of that of a conventional CMOS sense amplifier because of direct sensing and a 1/10 reduction in VT mismatch. This sense amplifier eliminates the sensitivity degradation and the area overhead increase that are expected in gigabit-scale DRAM arrays  相似文献   

3.
A 64-Mb dynamic RAM (DRAM) has been developed with a meshed power line (MPL) and a quasi-distributed sense-amplifier driver (qDSAD) scheme. It realizes high speed, tRAS=50 ns (typical) at Vcc=3.3 V, and 16-b input/output (I/O). This MPL+qDSAD scheme can reduce sensing delay caused by the metal layer resistance. Furthermore, to suppress crosstalk noise, a VSS shield peripheral layout scheme has been introduced, which also widens power line widths. This 64-Mb DRAM was fabricated with 0.4-μm CMOS technology using KrF excimer laser lithography. A newly developed memory cell structure, the tunnel-shaped stacked-capacitor cell (TSSC), was adapted to this 64-Mb DRAM  相似文献   

4.
The decoded-source sense amplifier (DSSA) for high-speed, high-density DRAMs is discussed. To prevent clamping of the common-source node of the sense amplifier caused by bit-line discharge current, the DSSA has an additional latching transistor with a gate controlled by a column decoder. The DSSA has been successfully installed in a 4-Mb DRAM and provided a RAS access time of 60 ns under a Vcc of 4 V at 85°C  相似文献   

5.
A trench-capacitor DRAM cell called a half-VCC sheath-plate capacitor (HSPC) cell has been developed using 0.6-μm-process technology. It is applicable to DRAMs with capacities of 16 Mb and over. The HSPC cell achieves a storage capacitance of 51 fF in a cell area of 4.2 μm2 and excellent immunity (critical charge Qc<35 fC) against alpha-particle injection. These advantages are achieved using a half-VCC sheath-plate structure, a 5.5-nm SiO2-equivalent Si 3N4-SiO2 composite film, and three self-alignment technologies involving buried plate wiring, a sidewall contact and a pad for the bit-line contact. The device performance is evaluated using an experimental 2-kb array  相似文献   

6.
Circuit techniques for battery-operated DRAMs which cover supply voltages from 1.5 to 3.6 V (universal Vcc), as well as their applications to an experimental 64-Mb DRAM, are presented. The universal-Vcc DRAM concept features a low-voltage (1.5 V) DRAM core and an on-chip power supply unit optimized for the operation of the DRAM. A circuit technique for oxide-stress relaxation is proposed to improve high-voltage sustaining characteristics while only scaled MOSFETs are used in the entire chip. This technique increases sustaining voltage by about 1.5 V compared with conventional circuits and allows scaled MOSFETs to be used for the circuits, which can be operated from an external Vcc of up to 4 V. A two-way power supply scheme is proposed to suppress the internal voltage fluctuation within 10% when the DRAM is operated from external power supply voltages ranging from 1.5 to 3.6 V. An experimental 1.5-3.6-V 64-Mb DRAM is designed based on these techniques and fabricated by using 0.3-μm electron-beam lithography. An almost constant access time of 70 ns is obtained. This indicates that battery operation is a promising target for future DRAMs  相似文献   

7.
A latch-up-like failure phenomenon that shows hysteresis in the Vcc-Icc characteristics observed in a high-density CMOS dynamic RAM that utilizes an on-chip substrate-bias generator is discussed. This failure is caused by large substrate-current generation due to the depletion-mode threshold voltage of n-channel transistors at near-zero substrate-bias operation. It is increasingly important not only to design a powerful substrate-bias generator but also to suppress the back-gate bias effect on the n-channel transistor  相似文献   

8.
A 0.3-μm sub-10-ns ECL 4-Mb BiCMOS DRAM design is described. The results obtained are: (1) a Vcc connection limiter with a BiCMOS output circuit is chosen due to ease of design, excellent device reliability and layout area; (2) a mostly CMOS periphery with a specific bipolar use provides better performances at high speed and low power; (3) the direct sensing scheme of a single-stage MOS preamplifier combined with a bipolar main amplifier offers high speed; and (4) the strict control of MOS transistor parameters has been proven to be more important in obtaining high speed DRAMs, based on the 4-Mb design  相似文献   

9.
Dynamic RAM (DRAM) data-line interface noise generated during amplification, the key problem in designing 16 Mbit and higher DRAMs, is investigated. It is reported that: (1) in the half-Vcc approach, specific combinations of signal types (high and low) and CMOS sense-amplifier operating sequences cause interference noise during amplification; (2) interference noise exists in sense amplifiers; and (3) the noise results in a detrimental effect on data holding time characteristics. The interference noise is overcome by a transposed amplifier structure combined with a transposed data-line structure  相似文献   

10.
A 4-Mb high-speed DRAM (HSDRAM) has been developed and fabricated by using 0.7-μm Leff CMOS technology with PMOS arrays inside n-type wells and p-type substrate plate trench cells. The 13.18-mm×6.38-mm chip, organized as either 512 K word×8 b or 1 M word×4 b, achieves a nominal random-access time of 14 ns and a nominal column-access time of 7 ns, with a 3.6-V Vcc and provision of address multiplexing. The high level of performance is achieved by using a short-signal-path architecture with center bonding pads and a pulsed sensing scheme with a limited bit-line swing. A fast word-line boosting scheme and a two-stage word-line delay monitor provide fast word-line transition and detection. A new data output circuit, which interfaces a 3.6-V Vcc to a 5-V bus with an NMOS-only driver, also contributes to the fast access speed by means of a preconditioning scheme and boosting scheme. Limiting the bit-line voltage swing for bit-line sensing results in a low power dissipation of 300 mW for a 60-ns cycle time  相似文献   

11.
A sensing scheme in which the bit line is precharged to half V/SUB DD/ is introduced for CMOS DRAMs. The proposed circuitry uses a PMOS memory array and incorporates the following features: (1) a complementary sense amplifier consisting of NMOS and PMOS cross-coupled pairs; (2) clocked pulldown of the latching node; (3) complementary clocking of the PMOS pullup; (4) full-sized dummy cell generation of reference potential for sensing; (5) shorting transistor to equalize precharge potential of bit lines; and (6) depletion NMOS decoupling transistors for multiplexing bit lines. The study shows that the half-V/SUB DD/ bit-line sensing scheme has several unique advantages, especially for high-performance high-density CMOS DRAMs, which compared to the full-V/SUB DD/ bit-line sensing scheme used for NMOS memory arrays or the grounded bit-line sensing scheme for PMOS arrays in CMOS DRAMs.  相似文献   

12.
The concept of merging a vertical n-p-n bipolar and two sidewall NMOS transistors into an NMOS input merged bipolar/sidewall-MOS transistor with a bypass sidewall NMOS transistor structure (NBiBMOS transistor) is described. The output current of this structure, unlike that of NBiMOS transistors, is significant even when the output voltage (VCE or VDE) is less than the turn-on voltage of the n-p-n bipolar transistor (VBE=~0.8 V). This structure, when used in BiCMOS logic gates, will allow the output voltage to swing all the way to 0.0 V rather than to 0.8 V. The feasibility of this concept was demonstrated by fabricating and DC characterizing the NBiBMOS transistor structures, which occupy ~1.2 times the area of a single n-p-n bipolar transistor. The NBiBMOS transistor has a higher drive capability than that of a structure consisting of an NBiMOS and a separate bypass transistor, because the body-source junction of the bypass NMOS transistor is forward biased  相似文献   

13.
Hot-carrier stressing carried out as a function of substrate voltage on 2-μm NMOS devices under bias conditions Vd =8 V and Vg=5.5 V is discussed. The time power-law dependence of stressing changes as a function of substrate bias (Vb), having a power-law gradient of 0.5 for Vb=0 V and 0.3 for Vb=-9 V. Investigation of the type of damage resulting from stressing shows that at Vb=0 V, interface state generation results, while at Vb=-9 V, the damage is mostly by charge trapping. Measurements of the gate current under these two substrate bias conditions show that the gate electron current increases by over two orders of magnitude upon application of a strong back bias. It is suggested that the electron trapping arises from this enhanced gate electron current under large substrate voltage conditions  相似文献   

14.
The results of measurements of the digital characteristics of CMOS devices as a function of temperature between 77 and 300 K and of supply voltage between 3 and 20 V are presented. Using a fixed supply of 5 V, the low noise margin decreased from 2.54 to 2.11 V, but the high noise margin increased from 2.18 to 2.40 V as the temperature was increased from 77 to 300 K. On lowering the temperature from 300 to 77 K, both VII and VIH increased and the transition between these input logic voltages became more abrupt. These and other digital characteristics including noise immunity. V H-VI, and VIH-V II all showed a smooth monotonic improvement as the temperature decreased. These results can be qualitatively explained due to the increase in the absolute threshold voltages of the NMOS and PMOS transistors and to the decrease in the βNP ratio as the temperature is lowered  相似文献   

15.
The C-V characteristics of arsenic-doped polysilicon show a gate-bias dependence of the inversion capacitance and a reduction in the expected value of the inversion capacitance. The characteristics have been investigated with quasistatic and high-frequency C-V as well as conductance measurements of various capacitors that have been subjected to annealing times and temperatures ranging from 900°C/30 min to rapid thermal annealing at 1050°C. The results can be explained by assuming that there is a depletion region forming in the polysilicon due to insufficient activation of the dopant at the polysilicon/oxide surface. The impact of this condition on the device characteristics is shown to be a 20-30% reduction in the Gm of NMOS transistors with 125-Å Gate oxide thickness  相似文献   

16.
The effect of back-gate bias on the subthreshold behavior and the switching performance in an ultrathin SOI CMOS inverter operating at 300 and 77 K is investigated using a low-temperature device simulator. The simulation results show that the nonzero back-gate bias induces hole pile-up at the back interface, which causes opposite effects on the NMOS and PMOS subthreshold characteristics at 300 and 77 K. Throughout the transient process, at 300 K, for VB=-5 V operation, hole pile-up at the back interface always exists in the NMOS device. Compared to the zero back-gate bias case, at VB=-5 V, the risetime of the SOI CMOS inverter is over 5% shorter at 77 and 300 K and the falltime is 5% longer. Prepinch-off velocity saturation in the NMOS device dominates the pull-down transient as a result of the smaller electron critical electric field  相似文献   

17.
A self-backgating GaAs MESFET model which can simulate low-frequency anomalies has been developed by including deep-level trap effects. These cause transconductance reduction due to electron emission from EL2 in the depletion width change at the edge of the Schottky gate junction and the output conductance to increase due to the time-dependent net negative charge concentration in the semi-insulating substrate as a result of self-backgating with the applied signal frequency. This model has been incorporated in PSPICE and includes a time-dependent I-V curve model, a capacitance model, an RC network describing the effective substrate-induced capacitance and resistance, and a switching resistance providing device symmetry. An analytical capacitance model describes the dependence of capacitance on Vgs and Vds and includes the channel-substrate junction modulation by the self-backgating effect. A transit-time delay is also included in the transconductances, gm and gmbs, for model accuracy and to describe the phase shift of S-parameters. Measured data correspond to simulations by this model of the low-frequency anomalous characteristics, voltage-dependent capacitances, and S-parameters of conventional GaAs MESFETs for linear and microwave circuit design  相似文献   

18.
Electrical and reliability characteristics of diagonally shaped n-channel MOSFETs have been extensively investigated. Compared with the conventional device structure, diagonal MOSFETs show longer device lifetime under peak Isub condition (Vg =0.5 Vd). However, in the high-gate-bias region (Vg=Vd), diagonal MOSFETs exhibit a significantly higher degradation rate. From the Isub versus gate voltage characteristics, this larger degradation rate under high gate bias is concluded to be due mainly to the current-crowding effect at the drain corner. For a cell-transistor operating condition (Vg>Vd), this current-crowding effect in the diagonal transistor can be a serious reliability concern  相似文献   

19.
An experimental technique for accurately determining both the inversion charge and the channel mobility μ of a MOSFET is presented. With this new technique, the inversion charge is measured as a function of the gate and drain voltages. This improvement allows the channel mobility to be extracted independent of drain voltage VDS over a wide range of voltages (VDS=20-100 mV). The resulting μ(VGS) curves for different VDS show no drastic mobility roll-off at V GS near VTH. This suggests that the roll-off seen in the mobility data extracted using the split C- V method is probably due to inaccurate inversion charge measurements instead of Coulombic scattering  相似文献   

20.
Wide-voltage-range DRAMs with extended data retention are desirable for battery-operated or portable computers and consumer devices. The techniques required to obtain wide operation, functionality, and performance of standard DRAMs from 1.8 V (two NiCd or alkaline batteries) to 3.6 V (upper end of LVTTL standard) are described. Specific techniques shown are: (1) a low-power and low-voltage reference generator for detecting VCC level; (2) compensation of DC generators, VBB and VPP, for obtaining high speed at reduced voltages; (3) a static word-line driver and latch-isolation sense amplifier for reducing operating current; and (4) a programmable VCC variable self-refresh scheme for obtaining maximum data retention time over a full operating range. A sub-50-ns access time is obtained for a 16 M DRAM (2 M×8) by simulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号