首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Supercritical fluid extraction of oil from millet bran   总被引:4,自引:0,他引:4  
Proso millet bran [Panicum miliaceum (L.)], variety Dakota White, was extracted with supercritical carbon dioxide (SC-CO2) to yield crude oil. The effects of operating parameters (pressure, temperature, and specific solvent flow) and of features of the raw material (moisture content and particle size) on oil extraction were investigated. Complete de-oiling of ground millet bran pellets was achieved under 300 bar at 40°C with a specific solvent flow of 2–10 h−1 within 200 to 500 min. Solvent requirements were 20–30 kg CO2/kg raw material. Composition of crude SC-CO2 oil extracted under optimal conditions, i.e., fatty acid profile, amount of unsaponifiables, tocopherols, free fatty acids, sterols, sterol esters, waxes, hydrocarbons, and phospholipids, was compared to that of crude oil obtained by petroleum ether extraction. These two oils were similar in terms of fatty acid profile and amount of free fatty acids, unsaponifiables, peroxides, and tocopherols. They differed in respect to phospholipids (present in petroleum etherextracted oil and absent in SC-CO2 extracted oil), metals, and waxes (lower levels in SC-CO2 extracted oil). The effects of extraction procedures on oxidative stability of crude SC-CO2 oil were studied. Ensuring that all pieces of the extractor in contact with the oil were in stainless steel; cleaning the separator, i.e., washing with KOH, rinsing, purging with N2 and CO2, and heating; performing a couple of extractions before the main extraction; and achieving the extraction without interruption all positively influenced the oxidative stability of the oil. Conversely, increasing CO2 purity above 99.5% had no effect. Oxidative stability of the SC-CO2 oil extracted under these conditions was only slightly lower than that of the oil extracted with petroleum ether.  相似文献   

2.
Supercritical CO2 extraction of flaxseed   总被引:2,自引:0,他引:2  
Extraction of flaxseed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the solubility of oil and oil yield, three isobaric (21, 35, and 55 MPa) and two isothermal (50 and 70°C) extraction conditions were selected. Although the maximal solubility of flaxseed oil, 11.3 mg oil/g CO2, was obtained at 70°C/55 MPa, the oil yield obtained after 3 h of extraction at this condition was only 25% (g oil/g seed×100), which represented 66% of the total available oil of the flaxseed. Lipid composition and FFA and tocol (tocopherol and tocotrienol) contents of the oils obtained by both SC-CO2 and petroleum ether extraction were determined. The α-linolenic acid content of the SC-CO2-extracted oil was higher than that obtained by solvent extraction.  相似文献   

3.
Krill oil including astaxanthin was extracted using supercritical CO2 and hexane. The effects of different parameters such as pressure (15 to 25MPa), temperature (35 to 45 °C), and extraction time, were investigated. The flow rate of CO2 (22 gmin−1) was constant for the entire extraction period of 2.5 h. The maximum oil yield was found at higher extraction temperature and pressure. The oil obtained by SC-CO2 extraction contained a high percentage of polyunsaturated fatty acids, especially EPA and DHA. The acidity and peroxide value of krill oil obtained by SC-CO2 extraction were lower than that of the oil obtained by hexane. The SC-CO2 extracted oil showed more stability than the oil obtained by hexane extraction. The amount of astaxanthin in krill oil was determined by HPLC and compared at different extraction conditions. The maximum yield of astaxanthin was found in krill oil extracted at 25 MPa and 45 °C.  相似文献   

4.
This work explored the possibility of using supercritical carbon dioxide (SC-CO2) to achieve fractionation of pre-pressed rapeseed (Brassica napus) cake oil at 30–50 MPa, at 40 or 80 °C, and increase the concentration of minor lipids (sterols, tocopherols, carotenoids) in the oil. Minor lipids are partially responsible for desirable antioxidant effects that protect against degradation and impart functional value to the oil. The weight and concentration of minor lipids in oil fractions collected during the first 60 min were analyzed. Cumulative oil yield increased with pressure, and with temperature at ≥40 MPa, but was lower at 80 °C than at 40 °C when working at pressure ≤35 MPa. Differences in solubility between the oil and minor lipids explained fractionation effects that were small for tocopherols. Unlike tocopherols, which are more soluble in SC-CO2 than the oil, sterols and carotenoids are less soluble than the oil, and their concentration increased in the later stages of extraction, particularly at ≥40 MPa, when there was not enough oil to saturate the CO2 phase. Because of the fractionating effects on rapeseed oil composition, there was an increase in the antioxidant activity of the oil in the second half as compared to the first half of the extraction. Consequently, this study suggests that SC-CO2 extraction could be used to isolate vegetable oil fractions with increased functional value.  相似文献   

5.
Extraction of cottonseed lipids with supercritical carbon dioxide (SC-CO2) was conducted with and without a cosolvent, ethanol or 2-propanol (IPA). At 7000 psi and 80°C, the reduced pressure, temperature and density of SC-CO2 was at 6.5, 1.17 and 1.85, respectively; the specific gravity was 0.87. Under these conditions, CO2 is denser than most liquid extraction agents such as hexane, ethanol and IPA. The extraction of cottonseed with SC-CO2 gave a yield of more than 30% (moisture-free basis). This is comparable to yields obtained by the more commonly used solvent, hexane. The crude cottonseed oil extracted by SC-CO2 was visually lighter than refined cottonseed oil. This was substantiated by colorimetric measurements. No gossypol was detected in the crude oil. However, crude oil extracted by SC-CO2, to which less than 5% of ethanol or IPA as co-solvent was added, containedca. 200 ppm of gossypol, resulting in the typical dark color of cottonseed crude oil with gossypol. CO2 extracted a small amount of cottonseed phosphatides, about one-third of that extracted by pure ethanol, IPA or hexane. A second extraction with 100% ethanol or IPA after the initial SC-CO2 extraction produced a water-soluble lipid fraction that contained a significant amount of gossypol, ranging between 1500 and 5000 ppm. Because pure gossypol is practically insoluble in water, this fraction is believed to be made up of gossypol complexed with polysaccharides and phosphatides. Partially presented at the AOCS 1993 Annual Meeting & Expo in Anaheim, California.  相似文献   

6.
Laurus nobilis L., commonly known as daphne tree, is an evergreen that belongs to the Lauraceae family. Daphne trees produce grape-sized shiny purplish berries having three parts: flesh, skin, and an inner kernel (single seed). This study examines supercritical CO2 (SC-CO2) extraction of oil from daphne seeds. The oil yield of ground seeds varied from 14 to 28% depending on the method and particle size used for oil recovery. Yields were similar for both petroleum ether and SC-CO2 extraction. The extraction yield decreased significantly with increasing particle size. The amount of extract collected increased exponentially with increasing SC-CO2 pressure. The highest extraction yield was obtained at the highest temperature studied, 75°C. More than 45% of the oil was lauric acid. SC-CO2 is a viable technique to obtain high-purity L. nobilis L. seed oil, which is a potential ingredient for the cosmetic industry.  相似文献   

7.
This paper describes the extraction of borage seed oil by supercritical carbon dioxide (SC-CO2) and the further extraction of antioxidants from the SC-CO2-defatted borage meal with organic solvents (water, methanol, ethanol and ethyl acetate). The optimal conditions for oil extraction were obtained at 303 and 323 K at 200 bar, 2.5 h and a continuous flow of CO2 of 1.5 L/h introduced through the bottom when the operating pressure and temperature were reached, attaining a yield of 60%. Borage oil is rich in unsaturated fatty acids; oleic acid, linoleic acid and linolenic acid accounted for 74% of the total fatty acid content under the above conditions. The highest extraction yield was achieved using water or methanol as extracting solvent from the SC-CO2-defatted borage meal at 303 K and pressures of 200 and 150 bar for water and methanol, respectively. The most potent extracts, according to all methods tested, were obtained with water and methanol.  相似文献   

8.
The qualities of oils extracted from fresh and dried palm-pressed mesocarp fiber were evaluated. The means of extraction included conventional solvent extraction and supercritical carbon dioxide (SC-CO2) extraction with and without addition of ethanol. Extraction efficiency using pure SC-CO2 and the effect of moisture content on efficiency were studied. Minor components, such as vitamin F, carotenoids, squalene and phytosterols, obtained by different methods were compared. The quality of oil recovered from fresh palm-pressed fiber is generally better than that of oil recovered from dried fiber. The SC-CO2 extraction rate was lower for fresh fiber than for dried fiber. The incorporation of ethanol with SC-CO2 resulted in oil with higher oxidative stability than did SC-CO2 alone. Concentrations of minor components and the acylglycerol compositions of the oils extracted from both types of fibers were similar.  相似文献   

9.
Supercritical fluid extraction of flaxseed oil with carbon dioxide was performed. Effects of particle size, pressure, temperature and the flow rate of supercritical carbon dioxide (SC-CO2) were investigated. Response surface methodology was used to determine the effects of pressure (30–50 MPa), temperature (50–70 °C) and SC-CO2 flow rate (2–4 g/min) on flaxseed oil yield in SC-CO2. The oil yield was represented by a second order response surface equation (R 2 = 0.993) using the Box-Behnken design of experiments. The oil yield increased significantly with increasing pressure (p < 0.01), temperature (p < 0.05) and SC-CO2 flow rate (p < 0.01). The maximum oil yield from the response surface equation was predicted as 0.267 g/g flaxseed for 15 min extraction of 5 g flaxseed particles (particle diameter <0.850 mm) at 50 MPa pressure and 70 °C temperature, with 4 g/min solvent flow rate. Total extraction time at these conditions was predicted as 22 min.  相似文献   

10.
Extraction of chia seed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the oil solubility and yield, two isobaric (250 and 450 bar) and two isothermal (40 and 60 °C) extraction conditions were selected. The global extraction yield of chia oil increased with pressure enhancement, but temperature had a little influence on it. The maximum oil recovery using SC-CO2 at a mass flow rate of 8 kg/h was 97%, which was obtained at 60 °C, 450 bar for a 138-min extraction. The results showed that solubility changed from 4.8 g oil/kg CO2 at 60 °C–250 bar to 28.8 g oil/kg CO2 at 60 °C–450 bar. The final extract obtained by SC-CO2 under different conditions and Soxhlet extraction contained mainly α-linolenic (64.9–65.6%) and linoleic (19.8–20.3%) acids. SC-CO2 extraction is an interesting alternative methodology because it is possible to achieve a chia oil yield close to that obtained by conventional extraction with a similar fatty acid composition using an environmentally friendly process.  相似文献   

11.
Crude oils were extracted from wet- and dry-milled corn germs with supercritical carbon dioxide (SC-CO2) at 50–90 C and 8,000–12,000 psi and were characterized for color, free fatty acids, phosphorus, refining loss, unsaponifiable matter, tocopherol and iron content. They were compared with commercial products. Extraction of wetmilled germ with SC-CO2 has some advantages over the conventional prepress solvent method commonly used in the industry. For example, SC-CO2 extraction of wet-milled germ at 50 C and 8,000 psi yields crude oil with a lower refining loss and a lighter color. After laboratory processing, a light-colored, bland salad oil is obtained. Crude, refined, bleached and deodorized oils from SC-CO2-extracted dry-milled germ appear equivalent to those obtained by expeller pressing. Presented in part at AOCS meeting, Toronto, Ontario, Canada, May 1982.  相似文献   

12.
Supercritical carbon dioxide (SC-CO2) successfully extracted triglycerides from crude Shea nut oil (Butyrospermum parkii) at temperatures of 40–80°C and pressures of 100–400 bar. Selective removal of free fatty acid, mono- and di-glycerides, iron, triterpene acetates, triterpene cinnamates and polyisoprenoid gum from triglyceride was achieved by varying the solvent power of the SC-CO2. Triglyceride so produced had a higher stability to oxidation than the crude oil. Polyisoprenoid gum was essentially insoluble in SC-CO2. The extraction partially fractionated the triglycerides according to their carbon numbers.  相似文献   

13.
Solubility of fatty acids in supercritical carbon dioxide   总被引:1,自引:0,他引:1  
The solubilities of lauric, linoleic, myristic, oleic, palmitic and stearic acid in supercritical carbon dioxide (SC-CO2) at different pressures and temperatures were measured. The solubility values obtained in this work were compared with previously published data, and possible causes for observed discrepancies were discussed. The solubilities of the six fatty acids were modeled by Chrastil’s equation, and estimated model parameters were used to plot the solubility isotherms of fatty acids at 313, 323 and 333°K (40, 50 and 60°C) as a function of SC-CO2 density. The comparison of solubility isotherms of fatty acids and vegetable oil suggests that separation of fatty acids from triglycerides might be possible by using SC-CO2 at densities less than 700 kg/m3. From the effect of temperature on fatty-acid and vegetable-oil solubility, it seems that the extraction yield could be increased without sacrificing the selectivity of SC-CO2 for fatty acids by choosing a higher operating temperature. The data also suggest that fractionation of certain fatty acids might be possible by manipulating the processing conditions. Given the values of the constants, Chrastil’s equation could serve as a guideline for choosing appropriate processing conditions and predicting the effect of pressure and temperature of SC-CO2 on solute solubility.  相似文献   

14.
Moisture level and particle size of soybeans, peanuts and cottonseed were correlated with the extraction rate and yield of oil when extracted with supercritical carbon dioxide (SC-CO2) at a constant temperature (50 C) and pressure (8000 psig). The rate of extraction and ultimate oil yields were quite low with cracked soybeans. However, good extraction rates and nearly theoretical oil yields were obtained from ground or thinly flaked (<0.010″) seeds. Moisture levels between 3% and 12% had little effect on extracability. Oil composition was not influenced by either parameter. Scanning electron microscopy was used to study seed structure before and after extraction with SC-CO2. Micrographs of SC-CO2-extracted seeds were similar to hexane-extracted seeds. Presented at the AOCS Meeting, May 1983, Chicago.  相似文献   

15.
Full-fat soyflakes are readily extracted with supercritical carbon dioxide (SC-CO2) at pressures of 3,000~10,000 psig and 50 C. Under these conditions, SC-CO2 has the density of a liquid and the diffusivity of a gas. Therefore, equilibrium solubility is readily achieved in a short-path batch extractor which permits high gas flow rates. Soybean oil extracted with SC-CO2 is lighter in color and contains less iron and about one-tenth the phosphorus of hexane-extracted crude oil from the same beans. The lower phosphorus content is reflected in a chromatographic refining loss of 0.6% compared to 1.9% for hexane crude. Refined oils from hexane and SC-CO2 extraction had equivalent odor and flavor scores initially and after 4 days' storage at 60 C. Carbon dioxide, an ideal solvent for extraction of food products, is low-cost and readily available from fermentation processes and could free over 20 million gallons of costly hexane per year for essential energy uses.  相似文献   

16.
This study investigates supercritical carbon dioxide (SC-CO2) extraction of triglycerides from powdered Jatropha curcas kernels followed by subcritical hydrolysis and supercritical methylation of the extracted SC-CO2 oil to obtain a 98.5% purity level of biodiesel. Effects of the reaction temperature, the reaction time and the solvent to feed ratio on free fatty acids in the hydrolyzed oil and fatty acid esters in the methylated oil via two experimental designs were also examined. Supercritical methylation of the hydrolyzed oil following subcritical hydrolysis of the SC-CO2 extract yielded a methylation reaction conversion of 99%. The activation energy of hydrolysis and trans-esterified reactions were 68.5 and 45.2 kJ/mole, respectively. This study demonstrates that supercritical methylation preceded by subcritical hydrolysis of the SC-CO2 oil is a feasible two-step process in producing biodiesel from powdered Jatropha kernels.  相似文献   

17.
《分离科学与技术》2012,47(13):1974-1985
Extract from cardamom seeds (Elettaria cardamomum) having highest content of 1,8-cineol was obtained by supercritical carbon dioxide (SC-CO2) with a sample size of 25 g at 50°C, 200 bar after 90 min at a flow rate of 2 L/min of gaseous CO2, compared to those obtained by hydro-distillation, organic solvent, liquid CO2, and subcritical CO2 extractions. This extract had the best combination of phytochemical properties such as phenolic content, reducing power, antioxidant activity, anti-inflammatory, and antimicrobial potency. Cardamom extract-enriched custard was formulated using this extract which showed promise as a nutraceutical product.  相似文献   

18.
Cloud‐point data to 280°C and 2800 bar are reported for a binary mixture of poly(tetrafluoroethylene‐co‐19.3 mol % hexafluoropropylene) (FEP19) in fluoroform (CHF3) and for ternary mixtures of FEP19–CHF3–sulfur hexafluoride (SF6) and FEP19–CO2–SF6. FEP19 does not dissolve in CHF3 at a temperatures less than 235°C due to strong dipolar CHF3–CHF3 interactions relative to FEP19–CHF3 cross interactions. However, FEP19 dissolves in CO2 if the temperature is greater than ≈185°C and the pressure is in excess of 1000 bar. When SF6 is added to either FEP19–CO2 or FEP19–CHF3 mixtures, the cloud‐point curve is shifted to lower pressures and temperatures due to the increase in favorable dispersion interactions with nonpolar FEP19. The magnitude of the shift in cloud‐point pressure per amount of SF6 added to solution decreases in a nonlinear manner with increasing amounts of SF6. The Sanchez‐Lacombe equation of state can model the binary FEP19‐SCF data if the FEP19–CO2 and FEP19–CHF3 binary interaction parameters are allowed to vary with temperature. However, a poor representation is obtained for the ternary phase behavior. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2039–2045, 1999  相似文献   

19.
The deacidification of high-acidity oils from Black cumin seeds (Nigella sativa) was investigated with supercritical carbon dioxide at two temperatures (40 and 60°C), pressures (15 and 20 MPa) and polarities (pure CO2 and CO2/10% MeOH). For pure CO2 at a relatively low pressure (15 MPa) and relatively high temperature (60°C), the deacidification of a highacidity (37.7 wt% free fatty acid) oil to a low-acidity (7.8 wt% free fatty acid) oil was achieved. The free fatty acids were quantitatively (90 wt%) extracted from the oil and left the majority (77 wt%) of the valuable neutral oils in the seed to be recovered at a later stage by using a higher extraction pressure. By reducing the extraction temperature to 40°C, increasing the extraction pressure to 20 MPa, or increasing the polarity of the supercritical fluid via the addition of a methanol modifier, the selectivity of the extraction was significantly reduced; the amount of neutral oil that co-extracted with the free fatty acids was increased from 23 to 94 wt%.  相似文献   

20.
超临界CO2萃取丁香油的数值模拟   总被引:1,自引:1,他引:0  
为了预测超临界CO2萃取挥发油动态过程,根据挥发油在超临界CO2与物料之间的质量传递平衡,采用集总参数法建立超临界CO2萃取丁香油过程的数学模型。结合不同温度、压力、粒径和CO2流速条件下的实验结果,对方程进行了合理的简化,并利用实验数据拟合出模型中CO2密度、粒径和流速的系数。验证结果表明模型的计算值和实验值的平均相对误差在6. 88%~57. 78%之间,建立的数值模型能较好地描述实际的超临界CO2萃取丁香油行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号