首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We compared the performance of a low-cost (~$500), compact optical particle counter (OPC, OPC-N2, Alphasense) to another OPC (PAS-1.108, Grimm Technologies) and reference instruments. We measured the detection efficiency of the OPCs by size from 0.5 to 5 µm for monodispersed, polystyrene latex (PSL) spheres. We then compared number and mass concentrations measured with the OPCs to those measured with reference instruments for three aerosols: salt, welding fume, and Arizona road dust. The OPC-N2 detection efficiency was similar to the PAS-1.108 for particles larger than 0.8 µm (minimum of 79% at 1 µm and maximum of 101% at 3 µm). For 0.5-µm particles, the detection efficiency of the OPC-N2 was underestimated at 78%, whereas PAS-1.108 overestimated concentrations by 183%. The mass concentrations from the OPCs were linear (r ≥ 0.97) with those from the reference instruments for all aerosols, although the slope and intercept were different. The mass concentrations were overestimated for dust (OPC-N2, slope = 1.6; PAS-1.108, slope = 2.7) and underestimated for welding fume (OPC-N2, slope = 0.05; PAS-1.108, slope = 0.4). The coefficient of variation (CV, precision) for OPC-N2 for all experiments was between 4.2% and 16%. These findings suggest that, given site-specific calibrations, the OPC-N2 can provide number and mass concentrations similar to the PAS-1.108 for particles larger than 1 µm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


2.
A new palm-sized optical PM2.5 sensor has been developed and its performance evaluated. The PM2.5 mass concentration was calculated from the distribution of light scattering intensity by considering the relationship between scattering intensity and particle size. The results of laboratory tests suggested that the sensor can detect particles with diameters as small as ~0.3 µm and can measure PM2.5mass concentrations as high as ~600 µg/m3. Year-round ambient observations were conducted at four urban and suburban sites in Fukuoka, Kadoma, Kasugai, and Tokyo, Japan. Daily averaged PM2.5 mass concentration data from our sensors were in good agreement with corresponding data from the collocated standard instrument at the Kadoma site, with slopes of 1.07–1.16 and correlation coefficients (R) of 0.90–0.91, and with those of the nearest observatories of the Ministry of the Environment of Japan, at 1.7–4.1 km away from our observation sites, with slopes of 0.97–1.23 and R of 0.89–0.95. Slightly greater slopes were observed in winter than in summer, except at Tokyo, which was possibly due to the photochemical formation of relatively small secondary particles. Under high relative humidity conditions (>70%), the sensor has a tendency to overestimate the PM2.5 mass concentrations compared to those measured by the standard instruments, except at Fukuoka, which is probably due to the hygroscopic growth of particles. This study demonstrates that the sensor can provide reasonable PM2.5 mass concentration data in urban and suburban environments and is applicable to studies on the environmental and health effects of PM2.5.

Copyright © 2018 American Association for Aerosol Research  相似文献   


3.
The polarization ratio method is used for fast in-situ characterization of unimodal condensed aerosols of e-cigarettes. The method is based on 90°-light scattering of polarized 680 nm laser light by the droplet ensemble inside an optically defined measuring volume. Mass median droplet diameter (MMD) is derived from the ratio of scattered light from horizontally and vertically polarized incident light beams assuming a fixed value of the geometric standard deviation of the aerosol mass distribution. MMD is used to correct for the size dependence of the mass-based scattering signal of vertically polarized light to obtain the mass concentration if the sensor is calibrated once with an aerosol with a fixed MMD. The sensor uses commercially available aerosol photometers, and its application to e-cigarette aerosols was validated with an impactor for MMD and with a filter measurement for mass concentration. Good correlation (r2 > 0.97) for both parameters was observed. Application ranges are mass concentration range 0.5–50 mg/L, MMD 0.2–1.2 µm, 100 ms time resolution, and 0.2–3 L/min flow rate. The usefulness of this simple sensor for e-cigarette aerosol characterization is demonstrated by developing a scaling law between MMD and operating parameters of an e-cigarette, i.e., puff flow rate and mass concentration.

Copyright © 2018 American Association for Aerosol Research  相似文献   


4.
The characteristics of fugitive dust emitted from vehicles traveling on unpaved dirt roads were measured using a suite of instruments including a real-time fugitive dust sampler. The fugitive dust sampler is formed from a combination of a large particle inlet and an optical particle spectrometer that reports particle sizes from 6 to 75 µm. The large particle inlet permits the sampling of particles up to 75 µm with only a moderate dependence of sampling efficiency on wind-speed. Measurements made with the sampler showed that particles as large as ~50 µm were suspended from vehicular movement on the dirt roads, with the mode of the fugitive dust particle number size distribution ~2 µm, while the mass distribution mode was ~7 µm. A comparison of the fugitive dust sampler measurements with those made using standard PM instruments showed that the conventional instruments have a wind-direction bias that can result in under-sampling of large particles. The current measurements suggest that particles suspended from dirt roadways are of importance for local air quality within the near-road environment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


5.
A 405 nm diode laser-based on-line bioaerosol detector, BioScout, was tested and compared with the Ultraviolet Aerodynamic Particle Sizer (UVAPS). Both instruments are based on laser-induced fluorescence of particles. Only a fraction of microbial particles produce enough fluorescence light to be detected by the instruments. This fluorescent particle fraction (FPF) is aerosol and instrument specific. The FPF values for common bacterial and fungal spores and biochemical particles were experimentally determined for both instruments. The BioScout exhibited higher FPF values for all the test aerosols except coenzyme NADH. The difference was higher for smaller particles. The FPF values of fungal spores and bacteria varied between 0.34 to 0.77 and 0.13 to 0.54 for the BioScout and the UVAPS, respectively. The results indicate that the 405 nm diode laser is a useful excitation source for fluorescence-based real-time detection of microbial aerosols. The FPF results of this study can be utilized to estimate the actual concentrations of bacterial and fungal spores in fluorescence-based ambient measurements.

Copyright 2014 American Association for Aerosol Research  相似文献   


6.
In the present work, the centrifugal filter proposed by the authors was applied to classify aerosol particles followed by the detection of total mass or number concentrations so as to measure the size distribution of aerosol particles. The structure and operating condition of the centrifugal filter were optimized in order to attain sharp separation curves with various cut-off sizes between 0.3 and 10 μm. The aerosol penetrating the centrifugal filter at various rotation speeds was measured with a photometer to determine the total mass concentration. The virtue of this system is that the cut-off size is varied just by scanning the rotation speed of filter and that it can be applied to the measurement of high concentration aerosols without dilution by choosing an appropriate filter medium. As a result, the centrifugal filter was successfully applied to measure the size distribution of solid particles in size ranging from 0.3 to 10 μm.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
Particulate matter in the atmosphere is known to affect Earth’s climate and to be harmful to human health. Accurately measuring particles from emission sources is important, as the results are used to inform policies and climate models. This study compares the results of two ELPI?+?devices, two PM10 cascade impactors and an eFilter, in combustion emission measurements. The comparison of the instruments in a realistic setting shows what types of challenges arise from measuring an emission aerosol with unknown particle morphologies and densities, different particle concentrations and high temperature. Our results show that the PM10 cascade impactors have very good intercorrelation when the collected mass is greater than 150?µg, but below that, the uncertainty of the results increases with decreasing mass. The raw signals of two ELPI?+?devices were nearly identical in most samples, as well as the particle number concentrations and size distributions calculated from raw signals; however, transforming the current distributions into mass distributions showed variation in the mass concentration of particles larger than 1?µm. The real-time time signal measured by eFilter was similar to the total current measured by ELPI+. The eFilter and PM10 cascade impactors showed similar particle mass concentrations, whereas ELPI?+?showed clearly higher ones in most cases. We concluded that the difference is at least partially due to volatile components being measured by ELPI+, but not by the mass collection measurements.

Copyright © 2019 American Association for Aerosol Research  相似文献   


8.
An experimental method is developed for the purpose of simulating plutonium aerosol source terms with conventional metals in laboratory. In this method, metal samples are aerosolized by high explosive detonation in a containment vessel. Aerosols having aerodynamic diameter (AD) less than 10 µm are then collected by a cascade impactor and analyzed by atomic absorption spectroscopy. Two sets of experiments were conducted. In the first set, five candidate metal samples (Ag, W, Sn, Ce, and V) were tested. It is found that the cumulative mass distribution of silver under certain conditions was in good agreement with that of plutonium from the Operation Roller Coaster-Double Track experiment. Thus, silver is chosen as a surrogate to simulate the plutonium aerosol source term. In the second set, silver aerosol source term was studied in detail with different test configurations. The results demonstrate that the peak of the mass-size distribution of silver is in the AD range 1.1–3.3 µm. The amount and fraction of relatively small silver aerosols decrease significantly with time due to coagulation and deposition. Interestingly, the amount of silver in aerosols could be expressed as a quadratic function of the peak detonation pressure.

© 2016 American Association for Aerosol Research  相似文献   


9.
Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 µm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selectively collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) device to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to effectively detect Fe particles at mass per substrate loadings less than 2.5 µg effectively, it produced results similar to those from ICP-MS at a mass per substrate loadings greater than 2.5 µg.

Copyright © 2017 American Association for Aerosol Research  相似文献   


10.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


11.
Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. In situ analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5–3 µm size range. The design minimizes particle collection areas allowing for in situ optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 µm particles for the flow rate of 1 slpm. Particles bigger than 1 µm have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10–20 µL. The transparent collection substrate and the distinct collection region, independent of particle size, allows for in situ optical analysis of the collected PM.

© 2017 American Association for Aerosol Research  相似文献   


12.
In patients with impaired respiratory function, heliox (80% helium, 20% oxygen) has been shown to increase the peripheral deposition of aerosols. It was hypothesized that using SUPRAER-CH, aerosols generated from viscous solutions/suspensions (4–40?cP) can be delivered as solid-phase aerosols with smaller aerodynamic diameters, at higher output efficiencies and increased pay-loads using heliox than with air using SUPRAER-CA. Aerosols were generated from solutions/suspensions of 100?mg/ml bovine serum albumin (BSA), 100?mg/ml bovine gamma globulin, 100?mg/ml polyvinylpirrolidone (PVP), 103?mg/ml and 35?mg/ml surfactant, and delivered at 44?l/min using SUPRAER-CH with heliox and SUPRAER-CA with air. Using SUPRAER-CH with heliox, aerosols of 1.1?µm to 3?µm the mass median aerodynamic diameter (MMAD) were generated from the above agents at output efficiencies between 70% and 88%. Using SUPRAER-CA with air, MMAD of particles delivered from these agents ranged between 2.5?µm and 3.6?µm with output efficiencies between 45% and 65%. Using heliox together with a liquid flow rate of 3?ml/min, the 8?kDa PVP, BSA, bovine gamma globulin, and surfactant aerosols were delivered at 4.3?mg/s, 3.8?mg/s, 3.5?mg/s, and 3.2?mg/s, respectively, with output efficiencies greater than 70%. Up to 2.2?g were collected at the output in 10?min (i.e., 10% 8?kDa PVP). These data indicate the superior utility of heliox to generate fine particle, solid-phase aerosols of proteins, antibodies, and surfactant suitable for delivery to the peripheral lung at clinically relevant doses. The high delivery rates could enable short treatment times.

Copyright © 2019 American Association for Aerosol Research  相似文献   


13.
The objective of this study was to obtain the multi-metric occupational exposure assessment to graphene family nanomaterials (GFNs) particles of workers engaged in the large-scale production of graphene. The study design consisted of the combination of (i) direct-reading instruments, used to evaluate the total particle number concentrations relative to the background concentration (time series with spatial approach) and the mean size-dependent characteristics of particles (mean diameter and surface-area concentration) and (ii) filter-based air sampling for the determination of size-resolved particle mass concentrations. The data obtained from direct reading measurement were then used to estimate the 8-h time weighted average (8-h TWA) exposure to GFNs particles for workers involved in different working tasks. Workers were generally exposed to 8-h TWA GFNs particle levels lower than the proposed reference value (40,000 particle/cm3). Furthermore, despite high short-term exposure conditions were present during specific operations of the production process, the possibility of significant exposure peaks is not likely to be expected. The estimated 8-h TWA concentration showed differences between the unexposed (<100 particle/cm3; <0.05 µg/m3) and exposed subjects (mean concentration ranging from 909 to 6438 particle/cm3 and from 0.38 to 3.86 µg/m3). The research outcomes can be of particular interest because the exposure of workers in real working conditions was assessed with a multi-metric approach; in this regard, the study suggests that workers who are directly involved in some specific working task (material sampling for quality control) have higher potential for occupational exposure than operators who are in charge of routine production work.

© 2016 American Association for Aerosol Research  相似文献   


14.
The Pegasor PPS-M sensor is an electrical aerosol sensor based on diffusion charging and current measurement without particle collection. In this study, the role and effect of each component in the instrument is discussed shortly and the results from a thorough calibration measurements are presented. A comprehensive response model for the operation of the PPS-M sensor was developed based on the calibration results and computational fluid dynamics (CFD) modeling results. The obtained response model, covering the effects of the particle charger, the mobility analyzer, and both diffusion and inertial losses, was tested in the laboratory measurements with polydisperse test aerosols, where a good correlation between the model and the measured results was found.

Copyright 2014 American Association for Aerosol Research  相似文献   


15.
The Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are widely used for quantifying submicron aerosol mass concentration and composition, in particular for organic aerosols (OA). Using the standard vaporizer (SV) installed in almost all commercial instruments, a collection efficiency (CE) correction, varying with aerosol phase and chemical composition, is needed to account for particle bounce losses. Recently, a new “capture vaporizer” (CV) has been shown to achieve CE~1 for ambient aerosols, but its chemical detection properties show some differences from the SV due to the increased residence time of particles and vaporized molecules inside the CV. This study reports on the properties and changes of mass spectra of OA in CV-AMS using both AMS and ACSM for the first time. Compared with SV spectra, larger molecular-weight fragments tend to shift toward smaller ions in the CV due to additional thermal decomposition arising from increased residence time and hot surface collisions. Artifact CO+ ions (and to a lesser extent, H2O+), when sampling long chain alkane/alkene-like OA (e.g., squalene) in the CV during the laboratory studies, are observed, probably caused by chemical reactions between sampled OA and molybdenum oxides on the vaporizer surfaces (with the carbon derived from the incident OA). No evidence for such CO+ enhancement is observed for ambient OA. Tracer ion marker fractions (fm/z =, i.e., the ratio of the organic signal at a given m/z to the total OA signal), which are used to characterize the impact of different sources are still present and usable in the CV. A public, web-based spectral database for mass spectra from CV-AMS has been established.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
The CIP 10-M personal sampler measures worker exposure to airborne particles by collecting particles in a rotating metal cup containing a few milliliters of a collection fluid. This device is mainly used to sample microorganisms or microbial components to measure bioaerosol concentrations in various occupational environments. Aqueous liquids are generally used, but their rapid evaporation limits the duration of sampling; alternative collection fluids could alleviate this problem. Indeed, the particle-collection efficiency of the rotating cup has not been extensively studied, and the only data available relate to a discontinued model. This study aimed to measure the collection efficiency of the current rotating cup model containing an aqueous (water) or viscous (ViaTrap mineral oil) collection fluid. The kinetics of evaporation confirmed that ViaTrap does not evaporate, making 8-h sampling campaigns in constant volumes feasible. Particles with a wide range of aerodynamic diameters (between around 0.1 and 10 µm) were produced using various test rigs and mono- or polydisperse test aerosols. Both new and older cup models performed similarly, with a collection efficiency of >80% for larger particles (aerodynamic diameters >2.8 µm), progressively decreasing to around 50% for aerodynamic diameters of 2.1 µm; with aerodynamic diameters of <1 µm, the collection efficiency was generally <10%. In physical terms, collection efficiency was unaffected by the type (aqueous or viscous) or volume (between 0 and 3 mL) of collection fluid used. Bias maps indicated that the inhalable fraction may be underestimated in occupational settings, particularly with aerosols mainly composed of particles with aerodynamic diameters of less than around 3 µm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


17.
Measuring aerosols and molecular clusters below the 3 nm size limit is essential to increase our understanding of new particle formation. Instruments for the detection of sub-3 nm aerosols and clusters exist and need to be carefully calibrated and characterized. So far calibrations and laboratory tests have been carried out using mainly electrically charged aerosols, as they are easier to handle experimentally. However, the charging state of the cluster is an important variable to take into account. Furthermore, instrument characterization performed with charged aerosols could be biased, preventing a correct interpretation of data when electrically neutral sub-3 nm aerosols are involved. This article presents the first steps to generate electrically neutral molecular clusters as standards for calibration. We show two methods: One based on the neutralization of well-known molecular clusters (mobility standards) by ions generated in a switchable aerosol neutralizer. The second is based on the controlled neutralization of mobility standards with mobility standards of opposite polarity in a recombination cell. We highlight the challenges of these two techniques and, where possible, point out solutions. In addition, we give an outlook on the next steps toward generating well-defined neutral molecular clusters with a known chemical composition and concentration.

Published with license by American Association for Aerosol Research  相似文献   


18.
Many aerosol instruments require calibration to make accurate measurements. A centrifugal particle mass analyzer (CPMA) and aerosol electrometer can be used to calibrate aerosol instruments that measure mass concentration. To understand the sources of uncertainty in the calibration method, two CPMA-electrometer systems were tested to measure the repeatability and intermediate precision of the system, where the repeatability is the standard deviation of several measurements using the same system over a short period of time, and the intermediate precision is the standard deviation of several measurements using different instruments with different calibrations over a long period of time. It was found that the repeatability of the CPMA and the aerosol electrometer were both 0.8%, while the intermediate precision was 1.3% and 2.2%, respectively. The intermediate precision of the aerosol electrometers determined here compares well with a broader study by national metrology institutes which determined an intermediate precision of ~1.7%. By propagation of uncertainty, it is expected that a CPMA-electrometer system would have repeatability of 1.1% and an intermediate precision of ~2.1%. This compares favorably to thermal-optical analysis methods which aim to measure black carbon mass concentrations for instrument calibration, which have a repeatability in the range of 8.5–20% and reproducibility in the range of 20–26% for elemental carbon. Thus, the CPMA-electrometer method may be a good alternative to existing instrument calibration procedures.

Copyright © 2019 American Association for Aerosol Research  相似文献   


19.
In order to evaluate the survivability of airborne viruses and the sampling performance of an eight-stage non-viable Andersen impactor in typical indoor environments featuring low viral aerosol concentrations, aerosols of a male-specific bacteriophage (MS2), human adenovirus type 1 (HAdV-1), and avian influenza virus (AIV) were sampled size-selectively using the impactor in an environmental chamber. Live virus titer, total virus RNA or DNA concentration, and intensity of a fluorescein tracer were measured to calculate relative virus recovery and virus survival. Viral aerosols were first sampled for 1 and 6 h at 25°C and 50% relative humidity (RH). Virus inactivation and plate overloading were found to be significant in the impactor. Viral aerosols were then sampled at different temperature and humidity levels. MS2 and AIV showed higher survival at lower temperature. Absolute humidity (AH) was found to be a better predictor of virus survival than RH, and the interaction between AH and temperature was not significant. For the tested AH range of 8.8 to 15.2 g/m3, MS2 and HAdV-1 had the highest survival at the lowest AH while AIV had the highest survival at the highest AH. More than 95% of mass collected was for particles smaller than 4.7 m, with the mass median diameter of 1.5 m. In the nebulizer, virus inactivation was not significant at 10 psi (69 kPa) compressed air pressure for up to 6 h of nebulization. Nebulizer analysis also reveals that the use of fluorescein tracer may not always accurately predict the physical loss of virus.

Copyright 2014 American Association for Aerosol Research  相似文献   


20.
Highly sensitive detection of nanoscale aerosols, or nano-aerosols, is a difficult challenge. Here, we report a fiber optical technique that is capable of detecting trace-level nano-aerosols. Our method is based on monitoring the nano-aerosol-induced resonance shift due to the optical Whispering-Gallery-Mode (WGM) in a cylindrical optical fiber resonator. A nearly linear relationship between the WGM resonance shift and the aerosol coverage ratio of silica nanoparticles (40–50 nm dia.) on the fiber resonator was identified in the low coverage regime. Our experimental results imply sensitivity at the level of ~2 nanoparticles per μm2 deposited on the fiber resonator, which corresponds to pg-level sensitivity in the total aerosol mass within the effective detection area. The response of this fiber optical sensor is further confirmed by using silica nanoparticles deposited on the fiber surface via electrostatic self-assembly. The fiber optical technique for nanoparticle detection may ultimately lead to an instrument capable of real-time in situ aerosol detection with ultrahigh sensitivity.

Copyright © 2016 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号