首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhalation of aerosols containing pathogenic viruses can result in morbidity, in some cases leading to mortality. The objective of this study was to develop a model for assessing how infectious viruses might distribute in airborne particles using bacteriophage MS2 as a surrogate for human viruses. Particle deposition in the respiratory system is size-dependent, and small virus-containing particles can be inhaled deeply into the lower lungs, potentially leading to more severe respiratory disease manifestations. Laboratory-generated virus-containing particles were size-selected by a differential mobility analyzer and then collected by the newly introduced Super-Efficient Sampler for Influenza Virus. The number of infectious and total viruses per particle as a function of particle size varied with the spraying medium: it approximated a cubic exponential value scaling for deionized (DI) water, a quartic exponential value for artificial saliva (AS), and between quadratic and cubic exponential value for beef extract solution (BES). The survivability of MS2 did not change significantly with particle size for DI water and BES, while that for AS was maximum at 120?nm. Viruses could be homogeneously distributed or aggregated inside or on the surface of the particles, depending on the composition of the spraying medium.

Copyright © 2019 American Association for Aerosol Research  相似文献   


2.
For rapid and effective detection of airborne microorganisms, it is preferable to remove dust particles during the air sampling process because they can reduce the detection accuracy of measurements. In this study, a methodology of real-time separation ofaerosolized Staphylococcus epidermidis (S. epidermidis) andpolystyrene latex (PSL) particles of similar size was investigated. These two species represent biological and non-biological particles, respectively. Due to their different relative permittivities, they grasp different numbers of air ions under corona discharge. After these charged particles enter a mobility analyzer with airflow, in which an electric field is applied perpendicular to the airflow, the S. epidermidis and PSL particles separate, due to the difference in their electric mobilities, and exit through two different outlets. Purities and recoveries for S. epidermidis and PSLat their respective outlets were determined with measurements of aerosol number concentrations and ATP bioluminescence intensities at the inlet and two outlets. The results were that purities for PSL and S. epidermidis were 70% and 80%, respectively. This methodology provides a rapid and simple way to increase the detection accuracy of bacterial agents in air.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
The influence of volatilization from mainstream tobacco smoke particles in annular denuders on the gas-particle distribution was investigated by using multiple annular denuders coupled with a filter pack method (multiple-AD-FP method) under low flow volume conditions (1.05 and 1.65 L/min). Smoking experiments and model experiments using poly styrene latex (PSL) particles and generated gases were conducted to measure the particle loss ratio and gas collection efficiency in the denuders. In this research, we focused on the influence of XAD-4 slurry concentrations and particle volatility including tobacco smoke from a cigarette and vapor products on the volatilization from particles in the denuders, and have proposed a measurement method for considering volatilization. Our experimental results showed that volatilization depends on the particle volatility, targeted components, denuder length, particle concentration, and adsorbent amount, thereby suggesting the importance of selecting the proper measurement conditions and taking volatilization into account, so as to evaluate the appropriate gas-particle distribution. The gas-phase nicotine ratio obtained from calculating the volatilization rate in the multiple-AD-FP method agreed with previous research. This means that the calculation method was appropriate for the evaluation of gas-particle distribution. Furthermore, the gas-particle ratio determined through the multiple-AD-FP method was compared to that determined through a filter-impinger method that uses a glass fiber filter. The results revealed that most of the gases in the filter-impinger method were not collected in the impinger due to the condensation of gases on the surface of the filter fibers and collected particles.

© 2017 American Association for Aerosol Research  相似文献   


4.
Low-cost sensors are effective for measuring the mass concentration of ambient aerosols and second-hand smoke in homes, but their use at concentrations relevant to occupational settings has not been demonstrated. We measured the concentrations of four aerosols (salt, Arizona road dust, welding fume, and diesel exhaust) with three types of low-cost sensors (a DC1700 from Dylos and two commodity sensors from Sharp), an aerosol photometer, and reference instruments at concentrations up to 6500 µg/m3. Raw output was used to assess sensor precision and develop equations to compute mass concentrations. EPA and NIOSH protocols were used to assess the mass concentrations estimated with low-cost sensors compared to reference instruments. The detection efficiency of the DC1700 ranged from 0.04% at 0.1 µm to 108% at 5 µm, as expected, although misclassification of fine and coarse particles was observed. The raw output of the DC1700 had higher precision (lower coefficient of variation, CV = 7.4%) than that of the two sharp devices (CV = 25% and 17%), a finding attributed to differences in manufacturer calibration. Aerosol type strongly influenced sensor response, indicating the need for on-site calibration to convert sensor output to mass concentration. Once calibrated, however, the mass concentration estimated with low-cost sensors was highly correlated with that of reference instruments (R2= 0.99). These results suggest that the DC1700 and Sharp sensors are useful in estimating aerosol mass concentration for aerosols at concentrations relevant to the workplace.

© 2016 American Association for Aerosol Research  相似文献   


5.
Indoor air microbial pollution may be responsible for various human allergies and diseases. To reduce exposure, airborne bacteria can be directly controlled through devices that employ ultraviolet-C (UV-C) radiation. In this study, a continuous annular photo-reactor was used to evaluate the inactivation dose for two species: Gram-negative Escherichia coli and Pseudomonas aeruginosa. In order to provide meaningful results, a comprehensive kinetic modeling was performed, which included the evaluation of optical properties of the microorganisms and the calculation of radiation field inside the reactor. In this way, intrinsic inactivation rates could be obtained. From the reactor modeling and the experimental data sets, the first order inactivation rate or UV susceptibility for E. coli was 0.1055?m2 J?1, while for P. aeruginosa the obtained value was 0.2579?m2 J?1. The approach used allows a straightforward scaling-up of the process for real applications and microorganism species involved.

Copyright © 2018 American Association for Aerosol Research  相似文献   


6.
Surgical face masks are commonly used by the general public in indoor environments. However, masks could be contaminated, resulting in secondary microbial infections when they act as touchable fomites. Therefore, we evaluated the ability and durability of a covalently bound antimicrobial surfactant coated onto mask surfaces before use to reduce the bacterial burden upon exposure to aerosols. With regard to bacteria that settled onto the mask surface, this antimicrobial product provided >99.3% efficiency for all three tested bacterial species. In addition, the antimicrobial ability of the coated mask maintained efficacy at least one week after coating. For bioaerosols that came into contact with the mask (103 CFU/m3), the antimicrobial agent reduced the average colony rates by 91.8%, but the rates decreased with increased bioaerosol concentrations. Moreover, regardless of whether the coated mask was processed with the bioaerosol penetration test or the National Institute for Occupational Safety and Health-certified sodium chloride aerosol test, the filtration performance of the surgical mask was not significantly altered. These results demonstrate that this antimicrobial product has a durable inhibitory activity for the reduction of bacterial burdens on masks.

Copyright © 2016 American Association for Aerosol Research  相似文献   


7.
Detection of bioaerosols is important in fields ranging from environmental health monitoring to biosurveillance, and current detector weaknesses have motivated the development of new technologies. In this work, a detector was built, which applies the principles of droplet microfluidics to bioaerosol detection. Droplet microfluidics is a subfield of microfluidics based on the creation of monodisperse microdroplets with compartmentalized reagents and supports enhanced assays and fluidic manipulations. The bioaerosol detector operates by aerodynamically focusing aerosols directly into these droplets to harness the benefits of the microreactor environment. A breadboard detector system, which consisted of an aerodynamic focusing lens, aerosol-focusing capillary, microfluidic droplet chip, and optical microscope, was constructed. Computational fluid dynamic simulations and Lagrangian particle tracking modeling were conducted to identify the optimal conditions for focusing. Preliminary experiments, where aerosols were deposited onto a solid substrate, demonstrated sub 200-µm spot diameters for aerodynamic diameters of 2–5 µm. Test aerosols were then generated, and collected into the microfluidic liquid interface on the chip as verified by microscopy. Recovery efficiency of the aerosols was dependent on aerosol size and ranged from about 27% to nearly 100%. Finally, to prove bioaerosol collection and detection, a droplet propidium iodide (PI) assay was performed: the system distinguished between E. coli and non-biological aerosols within 20 s. Overall, this work established the technique of direct collection of bioaerosols into a convenient droplet microfluidic platform for detection.

Copyright © 2017 The Johns Hopkins University Applied Physics Laboratory  相似文献   


8.
Detection and quantification of dilute viral aerosols, as encountered outside animal housing facilities, requires methods that are able to detect small numbers of viruses in large volumes of air. This study compared the performance of two size-differentiating cascade impactors; an Andersen 8-stage (ACI; 28.3 L/min) and a high volume Tisch (TCI; 1,133 L/min) to assess sampling efficiency for detecting porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Samples of particles sorted by aerodynamic diameter were analyzed by quantitative polymerase chain reaction (qPCR) and collection efficiency was assessed by particle size. Collection media (minimum essential medium [MEM] and beef extract [BE]), elution technique (active versus passive), and sampling times (10, 20, and 30 min) were variables assessed for the TCI sampler. Extraction efficiency was 35% higher with BE as compared to that of MEM (p = 0.0007); active extraction technique was 19% more efficient than the passive technique (p = 0.03); time of sampling did not significantly affect the amount of virus recovered. The ACI sampler was more efficient in detecting both viruses from small and medium sized airborne particles (≤3 μm) as compared to the TCI sampler (p < 0.001). The latter sampler, however, was more efficient at IAV detection from large airborne particles (>3 μm) (p = 0.0025) indicating the potential of this sampler in detecting the presence of small amounts of viruses in aerosols under field conditions.

© 2017 American Association for Aerosol Research  相似文献   


9.
A particle generation apparatus and methodology is described for its application to prepare heterogeneous particles of defined chemical composition and their subsequent delivery to human lung cell cultures. A concentric type nebulizer was used together with a single pass spray chamber that was operated at two different temperature settings, either room temperature or to produce intact particles, at nonuniform temperature with the central axis measuring 54°C. Silica (SiO2) particles in the micrometer size range were produced from the aggregation of nanoparticles. Tumor necrosis factor (TNF)-α, a well-characterized cytokine, was incorporated as a secondary soluble component within host silica particles for application as a proof-of-concept heterogeneous particle type. The overall particle deposition and wetting efficiency into media was 2.0 ± 0.4%, and the average size of particles that impacted and sank in the growth medium was 3.4 µm. The particle dose, reported as particle-to-cell ratio, spanned 0.1 to ~2.5. Co-cultures of A549 and differentiated human monocytic cells (THP-1*) exposed to silica particles caused IL-6 upregulation, but not IL-8. For the silica plus TNF-α particle type, ICAM-1 signal increased in A549 mono-cultures as the particle-to-cell ratio increased, yet an estimated 90% of the TNF-α was denatured or possibly bound to the silica particle host, and was therefore bio-unavailable. Method quantitation using particles having two different chemical compositions has been described, illustrating capability for subsequent systematic investigation of the role of particles having different chemical composition in the human health aspects of the particulate air pollution issue.

Copyright © 2016 American Association for Aerosol Research  相似文献   


10.
This project investigated airborne particle releases derived from paper shredding. The characteristics of these emissions have not been studied previously. The objective of this project was to characterize released particles in terms of particle size distribution, particle mass and number concentration, particle morphology and chemical composition, as well as the structure of paper fibers. A significant amount of paper particles were found in the close vicinity of an unenclosed paper shredder during shredding and the manual manipulation of shredded paper. The particle release from shredding using two types of printer paper, two types of shredders, and various shredding frequencies was measured inside the shredder basket. The particles released from paper shredding were found to be in the nanometer to micrometer size ranges, and the particles contained calcium and other metal elements. Manual stirring of shredded paper released the highest particle concentration as measured at the opening of the container. Shredding with 30-s intervals increased the duration of airborne particle release as compared to intermittent shredding. Multiple quantitative analyses were employed to evaluate released particles at various particle size ranges. Two real-time instruments which measured thoracic (<10 μm) and respirable (<4 μm) particle sizes showed comparable concentrations measured inside and outside of the shredder basket.

Copyright © 2017 American Association for Aerosol Research  相似文献   

11.
Energetic materials generating biocidal combustion products to disable airborne pathogenic microorganisms (including bio-threat agents) were designed as compounds of halogens and metals with high heats of oxidation. Thermally stable Al-based powders containing iodine and chlorine were prepared using ball-milling at room and cryogenic temperatures. Such powders can replace pure aluminum in metallized energetic formulations. Their stability and halogen release were quantified using thermo-gravimetric analysis. Ignition temperatures were determined by coating prepared powders onto an electrically heated filament. All prepared composites had lower ignition temperatures and longer combustion times compared to pure Al. In separate experiments, combustion products generated by injecting the prepared powders into an air-acetylene flame were mixed with a well-characterized bioaerosol. Inactivation of viable bioaerosol particles exposed to the heated combustion products for a short period of time (estimated to be 0.33 s) was quantified. The combustion products of materials investigated in this study effectively inactivated the aerosolized spores of two tested surrogates of Bacillus anthracis (B. atrophaeus and B. thuringiensis var kurstaki). A ternary composite with 20 wt% of iodine, 40 wt% of aluminum and 40 wt% of boron was found to be most attractive based on both its stability and efficiency in inactivating the aerosolized spores. The inactivation achieved was primarily attributed to chemical stresses as the thermal effect could not solely produce the high measured levels of inactivation. The findings point to a possible synergy of the thermal and chemical spore inactivation mechanisms.

© 2017 American Association for Aerosol Research  相似文献   


12.
Wood pellets have been used in domestic heating appliances for three decades. However, because the share of renewable energy for heating will likely rise over the next several years, alternative biomass fuels, such as short-rotation coppice or energy crops, will be utilized. We tested particulate emissions from the combustion of standard softwood pellets and three alternative pellets (poplar, Miscanthus sp., and wheat straw) for their ability to induce inflammatory, cytotoxic, and genotoxic responses in a mouse macrophage cell line. Our results showed clear differences in the chemical composition of the emissions, which was reflected in the toxicological effects. Standard softwood and straw pellet combustion resulted in the lowest PM1 mass emissions. Miscanthus sp. and poplar combustion emissions were approximately three times higher. Emissions from the herbaceous biomass pellets contained higher amounts of chloride and organic carbon than the emissions from standard softwood pellet combustion. Additionally, the emissions of the poplar pellet combustion contained the highest concentration of metals. The emissions from the biomass alternatives caused significantly higher genotoxicity than the emissions from the standard softwood pellets. Moreover, straw pellet emissions caused higher inflammation than the other samples. Regarding cytotoxicity, the differences between the samples were smaller. Relative toxicity was generally highest for the poplar and Miscanthus sp. samples, as their emission factors were much higher. Thus, in addition to possible technical problems, alternative pellet materials may cause higher emissions and toxicity. The long-term use of alternative fuels in residential-scale appliances will require technological developments in both burners and filtration.

Copyright © 2016 American Association for Aerosol Research  相似文献   


13.
Sampling for culturable (e.g., viable) aerosolized microbes (bioaerosols) is a useful means to provide information for public health monitoring and studies. However, it is challenging to maintain microbe culturability when sampling at high flow rates (>12 L/min) and extended periods of time (≥4 h). We developed a first-generation, viable bioaerosol collection system (VBCS) utilizing temperature (T) and relative humidity (RH)–conditioned filtration at a flow rate of 25 L/min. A two-stage system of tube-in-shell Nafion? exchange units provides cooling to ≤10°C and RH conditioning to 80–95%. Aerosol particles are collected on a polyurethane nanofiber filter providing a physical collection efficiency of >95% for sizes 0.06–10 µm. The T and RH conditions at the collection filter are maintained, despite changes to ambient conditions. The initial testing of the VBCS was done under indoor, laboratory conditions with aerosolized, vegetative E. coli. A scenario of a 30-min challenge of bioaerosol followed by continued sampling of clean air for various times was used to judge culturability maintenance under extended-term sampling. An initial loss of culturability upon collection onto the filter was observed; 23 ± 13% relative to 4-mm all-glass impinger. However once collected, 98% of culturability was maintained for an additional 4.5 h of sampling. An exponential decay in culturability was observed from 8 h to 15 h of sampling. Also, 24-h cold storage of the filters collected was studied. The VBCS is based on the use of dry filter cassettes, needs minimal maintenance, and preserves culturability of vegetative bacteria for >4 h.

© 2017 RTI International and Aerosol Dynamics Inc.  相似文献   

14.
Many well-established models can be applied to calculate the filtration efficiencies. In these models the filtration velocity and challenging particle size are assumed to be known accurately. However, in realistic filtration tests, the filtration velocity has profiles dependent on the filter holder geometry and experimental conditions; the challenging particles have size distributions dependent on the instruments and operation conditions. These factors can potentially affect the measured filtration efficiency and lead to discrepancies with the models.

This study aims to develop an integrative model to predict the filtration efficiencies in realistic tests by incorporating the effects of the filtration velocity profile and challenging particle size distribution classified by a differential mobility analyzer (DMA) into the existing filtration models. Face velocity profile is modeled with fluid mechanics simulations; the initial generated particle size distribution, the particle charging status and the DMA transfer function are modeled to obtain the challenging particle size distribution. These results are then fed into the filtration models. Simulated results are compared with experimental ones to verify the model accuracy. This model can be used to reduce filtration test artifacts and to improve the experimental procedure.

The results reveal that the face velocity upstream the filter exhibits high degree of homogeneity not affecting the filtration efficiency if the filter pressure drop is not very low. The generated particle size distribution and the DMA selection size window could influence the challenging particle size distribution and therefore the measured filtration efficiency.

Copyright © 2017 American Association for Aerosol Research  相似文献   


15.
Many ultraviolet (UV)-based disinfection methods have been developed; however, these methods usually use the recirculating mode or need long irradiation periods due to its low photon energy. Vacuum UV (VUV) was recently found to be a promising light source, despite its ozone generation. In this study, we investigated photocatalysis reactions by VUV with short irradiation times (0.004–0.125 s) for simultaneously inactivating airborne MS2 viruses and degrading the generated ozone toward a flow-through air disinfection system with high flow-rates. We developed three effective shapes for the catalyst frame: 2 mm and 5 mm pleated, and spiral-type Pd-TiO2 catalysts. The 2 mm pleated Pd-TiO2/VUV photocatalyst exhibited the highest activity for simultaneous MS2 inactivation and ozone degradation, and the catalytic activity was effective regardless of relative humidity. Considering the gas phase and catalyst surface effects, and the natural inactivation of VUV-irradiated but live MS2 viruses, the 2 mm pleated Pd-TiO2/VUV and succeeding UV photocatalysis showed more than 90% in the overall inactivation efficiency with residual ozone of 35 ppb at an irradiation time of 0.009 s (flow-rate: 33 l/min). In contrast, most UV-based purifiers take longer times for disinfection. This system has the potential for an alternative to conventional UV-based air purifiers.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
Upper-room ultraviolet germicidal irradiation (UR-UVGI) is recommended for the defense against airborne pathogens in poorly ventilated rooms in public buildings or high risk environments, such as hospitals. Currently, there are few studies on the performance of UR-UVGI with the effective bacteria susceptibility constant (eZ-value) obtained from UR-UVGI experiment. In this study, the Eulerian model for the inactivation of UVGI was improved to consider the difference between exposure time and computational time, and was validated by our previous experiments. The method was applied to study numerically the performance of the UR-UVGI for 3, 6, and 10 air changes per hour (ACH) with the application of the eZ-value of airborne bacteria. Moreover, the eZ-values of commonly found bacteria, including Serratia marcescens, Staphylococcus epidermidis, Pseudomonas alcaligenes, and Micrococcus luteus, were obtained from a series of experiments in a full-scale environmental chamber equipped with a UR-UVGI fixture. The eZ-values were 0.0983, 0.0586, 0.0476, and 0.0115 m2/J, respectively. Compared with the data in the literature, these eZ-values of the tested bacteria are different from the Z-values obtained from single-pass UVGI. The simulation results show that UR-UVGI exhibited the highest inactivation efficiency on S. marcescens among the tested bacteria in this study. The percentage of bacteria inactivated by UR-UVGI decreased as the ventilation rate increased. The bacteria concentration in the breathing zone under low ventilation rate could be decreased using UR-UVGI. The findings demonstrate that high indoor air quality can be achieved with the application of UR-UVGI without the need to maintain high ventilation rate.

Copyright © 2017 American Association for Aerosol Research  相似文献   


17.
Biological warfare incidents generate both immediate and delayed hazards, potentially resulting from reaerosolization of deposited hazardous particles from surfaces. Understanding the causes and effects of the initial deposition method and environmental conditions on reaerosolization is important in hazard prediction and selection of mitigation approaches. This study was conducted to determine the amount of reaerosolization of various bacterial spores and 1 µm polystyrene latex microspheres deposited wet or dry and incubated at 20 or 80% relative humidity (RH). The organisms used in this study were Bacillus atrophaeus var. globigii (Bg), B. thuringiensis (Bt), B. anthracis ΔSterne (Ba-ΔSterne), Ba-ΔSterne ΔbclA mutant (BclA), and Ba-ΔSterne ΔcotE mutant (CotE). These organisms represent a range of spore types with different outer surfaces: spores with exosporium hairs and a basal layer (Ba-ΔSterne and Bt), spores with a basal layer (BclA), and spores with a spore coat only (no exosporium, Bg and CotE). A pulsed air impinging jet was used to reaerosolize particles from gridded glass surfaces. The amount of reaerosolization was determined by counting the number of particles on the gridded surface before and after applying the air jet. Results indicate that, in general, higher reaerosolization was observed when particles were deposited dry and incubated at lower RH conditions. Our results indicate that Bt (has exosporium) was reaerosolized more readily than Bg (no exosporium) in all cases studied. This method can be used in laboratory studies to compare bacterial spore behavior and to study the relative effects of different spore outer layers and surface types on reaerosolization.

© 2017 Leidos, Inc.  相似文献   


18.
19.
Wearable ionization air cleaners are compact in size and marketed for personal respiratory protection by removing air pollutants from users' breathing zone. In this study, ozone emission and particle removal rates of four wearable ionization air cleaners (namely, AC1 through AC4) were evaluated inside a 0.46 m3 stainless steel chamber. Continuous measurements were conducted for ozone concentration, PM2.5 concentration, and particle size distribution in the size range of 18.1–289 nm. Two of the four wearable air cleaners (i.e., AC1 and AC2) had detectable ozone emissions. The 10-h average ozone emission rates were quite different (i.e., 0.67 mg·h?1 for AC1 and 3.40 × 10?2 mg·h?1 for AC2); however, the ozone emissions were negligible for AC3 and AC4. The number removal rates for particles within the measured size range were highly variable (i.e., 2.20 h?1, 0.52 h?1, 8.10 h?1, and 27.9 h?1 for AC1 through AC4, respectively). The corresponding mass removal rates of PM2.5 were 1.85 h?1, 0.48 h?1,1.52 h?1, and 5.37 h?1, respectively. Regulatory guidelines are needed to assure these devices can effectively remove particles without ozone emissions to protect public health.

Copyright © 2016 American Association for Aerosol Research  相似文献   

20.
Filtration performances of air handling unit (AHU) filters for particles and microbial aerosols were investigated. The influence of the AHU operational conditions on the behavior of microorganisms collected on the filters was also studied. A lab-scale AHU with two filtration stages was developed and validated for the study of downsized filters with industrial geometries. Three types of filters of different efficiency were considered: G4, F7, and F9, according to European standard EN 779. Two configurations of filters were studied: G4 pleated/F7 bag and F7/F9 bag. Filters were sequentially clogged by alumina particles, which provided a mineral fraction in the particulate cake, and then by micronized rice particles, which provided the fungus Penicillium chrysogenum and an organic fraction that acts as a substrate for microorganisms. Finally, a microbial aerosol composed of endospores of Bacillus subtilis and spores of Aspergillus niger was nebulized to contaminate filters. After clogging, periods of 5 days on and 2 day weekend stops with restarts of ventilation were simulated for 6 weeks. The results showed that the filter efficiency for particles was quite comparable to that for microbial aerosols expressed in cultivable concentration. The particulate cake composed of alumina and micronized rice particles enabled the growth of the endogenous species P. chrysogenum and the survival of exogenous species B. subtilis and A. niger on filters. During restarts of ventilation, low particle concentrations were detected downstream of the second filtration stages by release but the microbial concentration from the fraction of air sampled was below the detection limit.

© 2016 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号