首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new method for focusing and concentrating a stream of moving micron-sized aerosol particles in air. The focusing and concentrating process is carried out by the combined drag force and optical force that is generated by a double-layer co-axial nozzle and a focused doughnut-shaped hollow laser beam, respectively. This method should supply a new tool for aerosol science and related research.

Copyright © 2018 American Association for Aerosol Research  相似文献   


2.
In the present work, the centrifugal filter proposed by the authors was applied to classify aerosol particles followed by the detection of total mass or number concentrations so as to measure the size distribution of aerosol particles. The structure and operating condition of the centrifugal filter were optimized in order to attain sharp separation curves with various cut-off sizes between 0.3 and 10 μm. The aerosol penetrating the centrifugal filter at various rotation speeds was measured with a photometer to determine the total mass concentration. The virtue of this system is that the cut-off size is varied just by scanning the rotation speed of filter and that it can be applied to the measurement of high concentration aerosols without dilution by choosing an appropriate filter medium. As a result, the centrifugal filter was successfully applied to measure the size distribution of solid particles in size ranging from 0.3 to 10 μm.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
The aerodynamic lens system of the Aerodyne Aerosol Mass Spectrometer (AMS) was analyzed using the Aerodynamic Lens Calculator. Using this tool, key loss mechanisms were identified, and a new lens design that can extend the transmission of particulate matter up to 2.5 μm in diameter (PM2.5) was proposed. The new lens was fabricated and experimentally characterized. Test results indicate that this modification to the AMS lens can significantly improve the transmission of large sized particles, successfully achieving a high transmission efficiency up to PM2.5 range.

© 2016 American Association for Aerosol Research  相似文献   


4.
A novel instrument has been developed for generating highly monodisperse aerosol particles with a geometrical standard deviation of 1.05 or less. This aerosol generator applies a periodic mechanical excitation to a micro-liquid jet obtained by aerodynamic flow-focusing. The jet diameter and its fastest growth wavelength have been optimized as a function of the flow-focusing pressure drop and the liquid flow rate. The monodisperse aerosol generated by this instrument is also charge neutralized with bipolar ions produced by a non-radioactive, corona discharge device. Monodisperse droplet generation in the 15- to 72-μm diameter range from a single 100-micron nozzle has been demonstrated. Both liquid and solid monodisperse particles can be generated from 0.7- to 15-μm diameter by varying solution concentration, liquid flow rate, and excitation frequency. The calculated monodisperse particle diameter agrees well with independent measurements. The operation of this new monodisperse aerosol generator is stable and reliable without nozzle clogging, typical of other aerosol generators at the lower end of the operating particle size ranges.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
The Aerodynamic Aerosol Classifier (AAC) is a novel instrument that selects aerosol particles based on their relaxation time or aerodynamic diameter. Additional theory and characterization is required to allow the AAC to accurately measure an aerosol’s aerodynamic size distribution by stepping while connected to a particle counter (such as a Condensation Particle Counter, CPC). To achieve this goal, this study characterized the AAC transfer function (from 32 nm to 3 μm) using tandem AACs and comparing the experimental results to the theoretical tandem deconvolution. These results show that the AAC transmission efficiency is 2.6–5.1 times higher than a combined Krypton-85 radioactive neutralizer and Differential Mobility Analyzer (DMA), as the AAC classifies particles independent of their charge state. However, the AAC transfer function is 1.3–1.9 times broader than predicted by theory. Using this characterized transfer function, the theory to measure an aerosol’s aerodynamic size distribution using an AAC and particle counter was developed. The transfer function characterization and stepping deconvolution were validated by comparing the size distribution measured with an AAC-CPC system against parallel measurements taken with a Scanning Mobility Particle Sizer (SMPS), CPC, and Electrical Low Pressure Impactor (ELPI). The effects of changing AAC classifier conditions on the particle selected were also investigated and found to be small (<1.5%) within its operating range.

Copyright © 2018 American Association for Aerosol Research  相似文献   


6.
A rectangular slit micro-aerodynamic-lens (μADL) aerosol concentrator operating at atmospheric pressure has been developed. A single stage version has shown concentration ratios of up to 40:1 for 1 μm aerosol particles while particles larger than 2 μm can be concentrated by more than 100:1 in a single stage. The design of this device has been guided by unsteady 3D CFD modeling using detached eddy simulations (DES), and has been validated experimentally using polystyrene spheres and salt crystals of known aerodynamic diameters. The pressure drop in the device does not exceed 1.5 kPa in the major flow and 0.3 kPa in the minor flow at a total flow of 10 slpm.

Copyright 2014 American Association for Aerosol Research  相似文献   


7.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


8.
Cavity ring-down spectroscopy (CRDS) of single, optically manipulated aerosol particles affords quantitative retrieval of refractive indices for particles of fixed or evolving composition with high precision. Here, we quantify the accuracy with which refractive index determinations can be made by CRDS for single particles confined within the core of a Bessel laser beam and how that accuracy is degraded as the particle size is progressively reduced from the coarse mode (>1 μm radius) to the accumulation mode (<500 nm radius) regime. We apply generalized Lorenz–Mie theory to the intra-cavity standing wave to explore the effect of particle absorption on the distribution of extinction cross section determinations resulting from stochastic particle motion in the Bessel beam trap. The analysis provides an assessment of the accuracy with which the real, n, and imaginary, κ, components of the refractive index can be determined for a single aerosol particle.

Published with license by American Association for Aerosol Research  相似文献   


9.
Aerosol formation is directly influenced by meteorological properties such as temperature and relative humidity. This study examines the influence of temperature on the physical properties and chemical composition of the aerosol produced from radical oxidation of aliphatic amines. Aerosol formation for temperatures ranging from 10 to 40°C was investigated in dual 90 m3 indoor atmospheric chambers. Further, chemical and physical responses of aerosol formed at one temperature and then raised/cooled to another were investigated in detail. Around two to three times more aerosol formation occurred at 10°C than at 40°C. This has important implications for locations influenced by amine emissions during the winter months. Significant aerosol formation occurred with the oxidation of amines with nitrate radical (100–600 μg/m3) and consisted largely of amine nitrate salts. These reactions are important contributors to aerosol formation during the nighttime hours, when nitrate radical is the dominant oxidant and temperatures tend to be cooler. Solid/gas partitioning of amine nitrate salt aerosol was consistent with literature results. A novel, temperature dependent, mechanism describing peroxy and hydroperoxy radical reactions was observed in the trimethylamine with hydroxyl radical oxidation experiments.

Copyright © 2016 American Association for Aerosol Research  相似文献   


10.
Near traffic routes and urban areas, the outdoor air particle number concentration is typically dominated by ultrafine particles. These particles can enter into the nearby buildings affecting the human exposure on ultrafine particles indoors. In this study, we demonstrate an aerosol generation system which mimics the characteristic traffic related aerosol. The aerosol generation system was used to determine the size-resolved particle filtration efficiencies of five typical commercial filters in the particle diameter range of 1.3–240 nm. Two different HEPA filters were observed to be efficient in all particle sizes. A fibrous filter (F7) was efficient at small particle sizes representing the nucleation mode of traffic related aerosol, but its efficiency decreased down to 60% with the increasing particle size. In contrast, the filtration efficiency of an electrostatic precipitator (ESP) increased as a function of the particle size, being more efficient for the soot mode of traffic related aerosol than for the nucleation mode. An electret filter with a charger was relatively efficient (filtration efficiency >85%) at all the observed particle sizes. The HEPA, F7 and electret filters were found to practically remove the particles/nanoclusters smaller than 3 nm. All in all, the filtration efficiencies were observed to be strongly dependent on the particle size and significant differences were found between different filters. Based on these results, we suggest that the particulate filter test standards should be extended to cover the ultrafine particles, which dominate the particle concentrations in outdoor air and are hazardous for public health.

Copyright © 2017 American Association for Aerosol Research  相似文献   


11.
A three-dimensional stochastic model is developed for predicting atmospheric aerosol collection and aggregation on the surface of a falling raindrop at its terminal velocity. Potential flow and viscous flow are assumed as the flow fields in the vicinity of the large and the small raindrops, respectively. The results show that hydrophobic coarse mode aerosols collected by either small raindrops (dc < 100 μm) or large drops (dc > 100 μm) form aggregations on the surfaces of drops, and accumulation mode aerosols tend to be captured by the aggregations or hydrophobic coarse particles which have been collected by the drops, and this may significantly enhance the capability of the raindrop for fine aerosol collection. When the aggregation effect is considered in the calculation, fine aerosol efficiency can be promoted by one to two orders of magnitude. Therefore, fine particle collision efficiency by raindrops is underestimated by employing the classical dynamic theory which neglects the particle aggregation effect. However, the collection efficiency of coarse particles remains almost constant with the increase in the amount of particles collected by large drops, while there is only a slight increase in efficiency by small raindrops upon increasing in particle concentration. This implies that the traditional limiting trajectory method can still be used for the calculation of coarse particle collection efficiencies by either small or large raindrops.

Copyright © 2018 American Association for Aerosol Research  相似文献   


12.
The net acoustic force acting on submicron particles suspended in a gas and exposed to a standing wave field is investigated as a function of particle size, by measuring both the aerosol number density and size distribution in a flow-through resonator. By taking into account all contributions relevant to the net force, this experimental study provides a first estimate for the acoustic radiation force in a size range where molecular effects are expected to be significant. The experiment consists of an electrostatic transducer generating a standing wave in the 50–80 kHz frequency range, with the submicron aerosol particles concentrated at pressure antinodes located across the height of a rectangular channel. A section of the flow is sampled isokinetically and analyzed using a Scanning Mobility Particle Sizer (SMPS), while the nodal patterns are visualized simultaneously using light scattering. The net acoustic force is calculated from their measured displacement along the axis of the 1D standing wave field. The component of this force resulting from radiation pressure is estimated by subtracting contributions from other forces. The results provide the first experimental estimation of the size dependence of the acoustic contrast factor for submicron aerosol particles, demonstrating the possibility of performing acoustic separation for diameters as small as 150 nm.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
A new experimental technique is reported to visualize agglomeration of submicron aerosol particles by laser-induced fluorescence (LIF). The basic idea is to produce or activate the fluorescent tracer material by a chemical reaction triggered by the agglomeration between two chemically different primary particles. Different types of chemical reactions are able to fulfil this task, among others acid–base reactions or molecule solvation. In this work, we demonstrate the feasibility of the fluorescent tracer activation by means of solvation. The fluorescence is activated almost instantaneously when the dry fluorescent material (Fluorescein or Rhodamine B) contained in the dye aerosol is dissolved by a water/glycerol mixture constituting the particles of the solvent aerosol. Estimations of the timescale for diffusional mixing suggest that the fluorescence is activated within 1 ms. Agglomerates can be detected as single particles or in bulk quantities depending on the available laser excitation energy and light sensitivity. In order to enhance agglomeration in the validation experiments, two aerosol streams were electrostatically charged with opposite polarity. Finally, potential variations and applications of the newly introduced technique are briefly discussed, mentioning the detection of humidity among others.

© 2017 American Association for Aerosol Research  相似文献   


14.
In situ atmospheric aerosol measurements have been performed from a Manta unmanned aircraft system (UAS) using recently developed miniaturized aerosol instruments. Flights were conducted up to an altitude of 3000 m (AMSL) during spring 2015 in Ny-Ålesund, Svalbard, Norway. We use these flights to demonstrate a practical set of miniaturized instruments that can be deployed onboard small UASs and can provide valuable information on ambient aerosol. Measured properties include size-resolved particle number concentrations, aerosol absorption coefficient, relative humidity, and direct sun intensity. From these parameters, it is possible to derive a comprehensive set of aerosol optical properties: aerosol optical depth, single scattering albedo, and asymmetry parameter. The combination of instruments also allows us to determine the aerosol hygroscopicity.

Copyright © 2017 American Association for Aerosol Research  相似文献   


15.
Aerosol sampling and identification is vital for assessment and control of particulate matter pollution, airborne pathogens, allergens and toxins, and their effect on air quality, human health, and climate change. Assays capable of accurate identification and quantification of chemical and biological airborne components of aerosol provide very limited sampling time resolution and relatively dilute samples. A low-cost micro-channel collector (μCC) which offers fine temporal and spatial resolution, high collection efficiency, and delivers highly concentrated samples in very small liquid volumes was developed and tested. The design and optimization of this μCC was guided by computational fluid dynamics (CFD) modeling. Collection efficiency tests of the sampler were performed in a well-mixed aerosol chamber using aerosolized fluorescent microspheres in the 0.5–6 μm diameter range. Samples were collected in the μCC and eluted into 100 μL liquid aliquots; bulk fluorescence measurements were used to determine the performance of the collector. Typical collection efficiencies were above 50% for 0.5 μm particles and 90% for particles larger than 1 μm. The experimental results agreed with the CFD modeling for particles larger than 2 μm, but smaller particles were captured more efficiently than predicted by the CFD modeling. Nondimensional analysis of capture efficiencies showed good agreement for a specific geometry but suggested that the effect of channel curvature needs to be further investigated.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
A coupled computational fluid dynamics (CFD)-Monte Carlo method is presented to simulate complex aerosol dynamics in turbulent flows. A Lagrangian particle method-based probability density function (PDF) transport equation is formulated to solve the population balance equation (PBE) of aerosol particles. The formulated CFD-Monte Carlo method allows investigating the interaction between turbulence and aerosol dynamics and incorporating individual aerosol dynamic kernels as well as obtaining full particle size distribution (PSD). Several typical cases of aerosol dynamic processes including turbulent coagulation, nucleation and growth are studied and compared to the sectional method with excellent agreement. Coagulation in both laminar and turbulent flows is simulated and compared to demonstrate the effect of turbulence on aerosol dynamics. The effect of jet Reynolds (Rej) number on aerosol dynamics in turbulent flows is fully investigated for each of the studied cases. The results demonstrate that Rej number has significant impact on a single aerosol dynamic process (e.g., coagulation) and the simultaneous competitive aerosol dynamic processes in turbulent flows. This newly modified CFD-Monte Carlo/PDF method renders an efficient method for simulating complex aerosol dynamics in turbulent flows and provides a better insight into the interactions between turbulence and the full PSD of aerosol particles.

Copyright © 2017 American Association for Aerosol Research  相似文献   


17.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


18.
A new primary standard method for calibrating optical particle counters (OPC) has been developed based on quantitative gravitational deposition on a silicon wafer and accurate counting of the particles by a wafer surface scanner (WSS). The test aerosol consists of 3-μm diameter monodisperse polystyrene latex (PSL) spheres at concentrations in the range of 0.1 cm?3 to 1 cm?3. A key element to the calibration is the ability to generate monodisperse PSL spheres without residue particles by use of a virtual impactor and differential mobility analyzer. The use of these devices reduced the percentage of residue particles from more than 99.98% to about 5%. The expanded relative uncertainty (95% confidence level) in the number concentration determined with a WSS for a deposition of 200 particles is 17.8%. The major uncertainty component arises from the Poisson fluctuations in the aerosol concentration because of the low concentration. This methodology has advantages of a fast scanning time by the WSS of minutes compared to hours or days by microscopy and of counting every particle deposited compared to often only a small fraction via microscopy.

The WSS was used in the calibration of an OPC based on 12 depositions with concentrations ranging from 0.1 cm?3 to 1 cm?3 for each deposition. Make-up air was added to the aerosol entering the OPC so that the lowest achievable concentration for the OPC measurement is about 0.01 cm?3 in this study. The detection efficiency of the OPC was measured to be 0.984 with an expanded uncertainty of 13.4%.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
An experimental method is developed for the purpose of simulating plutonium aerosol source terms with conventional metals in laboratory. In this method, metal samples are aerosolized by high explosive detonation in a containment vessel. Aerosols having aerodynamic diameter (AD) less than 10 µm are then collected by a cascade impactor and analyzed by atomic absorption spectroscopy. Two sets of experiments were conducted. In the first set, five candidate metal samples (Ag, W, Sn, Ce, and V) were tested. It is found that the cumulative mass distribution of silver under certain conditions was in good agreement with that of plutonium from the Operation Roller Coaster-Double Track experiment. Thus, silver is chosen as a surrogate to simulate the plutonium aerosol source term. In the second set, silver aerosol source term was studied in detail with different test configurations. The results demonstrate that the peak of the mass-size distribution of silver is in the AD range 1.1–3.3 µm. The amount and fraction of relatively small silver aerosols decrease significantly with time due to coagulation and deposition. Interestingly, the amount of silver in aerosols could be expressed as a quadratic function of the peak detonation pressure.

© 2016 American Association for Aerosol Research  相似文献   


20.
This article presents a verification and validation study of the stochastic particle-resolved aerosol model PartMC. Model verification was performed against self-preserving analytical solutions, while for validation three experiments were performed where the size distribution evolution of coagulating ammonium sulfate particles was measured in a cylindrical stainless steel chamber. To compare with the chamber measurements, PartMC was extended to include the representation of fractal particle structure and wall loss. This introduced five unknown parameters to the governing equation, which were determined by a combination of scanning electron microscopy (SEM) analysis and an objective optimization procedure. Excellent agreement between modeled and measured size distributions was achieved using the same set of parameters for all three experiments. Assuming spherical particles led to model results that were inconsistent with the measurements. The best agreement between model and measurement was obtained for the fractal dimension of 2.3, indicating that the non-spherical structure of the particle agglomerates in the chamber needed to be taken into account.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号