首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To address the critical need for improving the chemical characterization of the organic composition of ambient particulate matter, we introduce a combined thermal desorption aerosol gas chromatograph—aerosol mass spectrometer (TAG-AMS). The TAG system provides in-situ speciation of organic chemicals in ambient aerosol particles with hourly time resolution for marker compounds indicative of sources and transformation processes. However, by itself the TAG cannot separate by particle size and it typically speciates and quantifies only a fraction of the organic aerosol (OA) mass. The AMS is a real-time, in-situ instrument that provides quantitative size distributions and mass loadings for ambient fine OA and major inorganic fractions; however, by itself the AMS has limited ability for identification of individual organic compounds due to the electron impact ionization detection scheme used without prior molecular separation.

The combined TAG-AMS system provides real-time detection by AMS followed by semicontinuous analysis of the TAG sample that was acquired during AMS operation, achieving simultaneous and complementary measurements of quantitative organic mass loading and detailed organic speciation. We have employed a high-resolution time-of-flight mass spectrometer (HR-ToF-MS) to enable elemental-level determination of OA oxidation state as measured on the AMS, and to allow improved compound identification and separation of unresolved complex mixtures (UCM) measured on the TAG. The TAG-AMS interface has been developed as an upgrade for existing AMS systems. Such measurements will improve the identification of organic constituents of ambient aerosol and contribute to the ability of atmospheric chemistry models to predict ambient aerosol composition and loadings.

Copyright 2014 American Association for Aerosol Research  相似文献   


2.
Predicting indoor exposures to ambient organic aerosol (OA) is complicated by shifts in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport. This analysis aims to quantify the effect of changes in temperature and OA loading on the gas-particle partitioning of ambient organics transported indoors and explores whether accounting for shifts in partitioning closes the gap between measured indoor ambient OA concentrations and indoor concentrations calculated in a previous analysis using a model that accounts for only physical losses. Changes in the gas-particle partitioning of ambient organics with outdoor-to-indoor transport were calculated for 167 homes using measured temperatures and OA concentrations and published OA volatility distributions. Initially, it was assumed that ambient OA could be represented with a single volatility distribution. We then repeated the analysis treating ambient OA as the sum of distinct components, each with a distinct volatility distribution, derived from factor analysis of aerosol mass spectra (e.g., hydrocarbon-like OA [HOA], oxygenated OA [OOA]). We also evaluated the sensitivity of our calculations to uncertainty in the thermodynamic properties of ambient OA by varying the enthalpy of vaporization. Partitioning shifts were sensitive to enthalpy-of-vaporization assumptions and resulted in changes in indoor ambient OA concentrations of 13–27%. Our calculations indicate that phase changes are important determinants of residential exposure to ambient OA and are of sufficient magnitude to close the gap between measured and modeled indoor concentrations of ambient OA.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
Single-particle mass spectrometry (SPMS) has been widely used for characterizing the chemical mixing state of ambient aerosol particles. However, processes occurring during particle ablation and ionization can influence the mass spectra produced by these instruments. These effects remain poorly characterized for complex atmospheric particles. During the 2005 Study of Organic Aerosols in Riverside (SOAR), a thermodenuder was used to evaporate the more volatile aerosol species in sequential temperature steps up to 230°C; the residual aerosol particles were sampled by an aerosol mass spectrometer (AMS) and a single-particle aerosol time-of-flight mass spectrometer (ATOFMS). Removal of the secondary species (e.g., ammonium nitrate/sulfate) through heating permitted assessment of the change in ionization patterns as the composition changed for a given particle type. It was observed that a coating of secondary species can reduce the ionization efficiency by changing the degree of laser absorption or particle ablation, which significantly impacted the measured ion peak areas. Nonvolatile aerosol components were used as pseudo-internal standards (or “reference components”) to correct for this LDI effect. Such corrected ATOFMS ion peak areas correlated well with the AMS measurements of the same species up to 142°C. This work demonstrates the potential to accurately relate SPMS peak areas to the mass of specific aerosol components.

Copyright 2014 American Association for Aerosol Research  相似文献   


4.
Cookstoves are a major source of black carbon (BC) particles and associated organic compounds, which influence the atmospheric radiative balance. We present results from experiments that characterize BC emissions from a rocket stove coated with secondary organic aerosol. Optical properties, namely, BC mass absorption cross-section (MACBC) and mass scattering cross-section (MSC), as a function of the organic-to-black carbon ratio (OA:BC) of fresh and aged cookstove emissions were compared with Mie and Rayleigh–Debye–Gans (RDG) calculations. Mie theory reproduced the measured MACBC across the entire OA:BC range. However, Mie theory failed to capture the MSC at low OA:BC, where the data agreed better with RDG, consistent with a fractal morphology of fresh BC aggregates. As the OA:BC increased, the MSC approached Mie predictions indicating that BC-containing particles approach a core–shell structure as BC cores become heavily coated. To gain insight into the implications of our findings, we calculated the spectral simple forcing efficiency (dSFE) using measured and modeled optical properties as inputs. Good agreement between dSFE estimates calculated from measurements and Mie-modeled dSFE across the entire OA:BC range suggests that Mie theory can be used to simulate the optical properties of aged cookstove emissions.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
The article presents a mathematical model for calculation of nonstationary hydraulic and separation processes in a gas centrifuge (GC) cascade for separation of multicomponent isotope mixtures. The model has been applied to calculate the parameters of nonstationary processes in a GC cascade for separation of krypton, germanium and tungsten isotopes. As a result, the specifics of the excess holdup distribution along the cascade stages has been identified, and variations of the isotope concentrations in a nonstationary process have been revealed. The data obtained show that the proposed mathematical model is able to adequately describe nonstationary hydraulic processes in GC cascades for separation of multicomponent isotope mixtures.

Highlights:

Mathematical model of cascade for separation of multicomponent isotope mixture has been developed.

The model verification has been done.

The isotope transient regularities into cascade during nonstationary processes has been identified.  相似文献   


6.
In situ atmospheric aerosol measurements have been performed from a Manta unmanned aircraft system (UAS) using recently developed miniaturized aerosol instruments. Flights were conducted up to an altitude of 3000 m (AMSL) during spring 2015 in Ny-Ålesund, Svalbard, Norway. We use these flights to demonstrate a practical set of miniaturized instruments that can be deployed onboard small UASs and can provide valuable information on ambient aerosol. Measured properties include size-resolved particle number concentrations, aerosol absorption coefficient, relative humidity, and direct sun intensity. From these parameters, it is possible to derive a comprehensive set of aerosol optical properties: aerosol optical depth, single scattering albedo, and asymmetry parameter. The combination of instruments also allows us to determine the aerosol hygroscopicity.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
Understanding the links between aerosol and cloud and radiative properties remains a large uncertainty in predicting Earth's changing energy budget. Surfactants are observed in ambient atmospheric aerosol particles, and their effect on cloud droplet growth is a mechanism that was, until recently, neglected in model calculations of particle activation and droplet growth. In this study, coarse mode aqueous aerosol particles were created containing the surfactant Igepal CA-630 and NaCl. The evaporation and condensation of these individual aqueous particles were investigated using an aerosol optical trap combined with Raman spectroscopy. For a relative humidity (RH) change from 70% to 80%, droplets containing both Igepal and NaCl at atmospheric concentrations exhibited on average more than 4% larger changes in droplet radii, compared to droplets containing NaCl only. This indicates enhanced water uptake in the presence of surfactants, but this result is unexpected based on the standard calculation of the effect of surfactants, using surface tension reduction and/or hygroscopicity changes, for particles of this size. One implication of these results is that in periods with increasing RH, surfactant-containing aqueous particles may grow larger than similarly sized aqueous NaCl particles without surfactants, thus shifting atmospheric particle size distributions, influencing particle growth, and affecting aerosol loading, visibility, and radiative forcing.

Copyright © 2018 American Association for Aerosol Research  相似文献   


8.
In the present work, the centrifugal filter proposed by the authors was applied to classify aerosol particles followed by the detection of total mass or number concentrations so as to measure the size distribution of aerosol particles. The structure and operating condition of the centrifugal filter were optimized in order to attain sharp separation curves with various cut-off sizes between 0.3 and 10 μm. The aerosol penetrating the centrifugal filter at various rotation speeds was measured with a photometer to determine the total mass concentration. The virtue of this system is that the cut-off size is varied just by scanning the rotation speed of filter and that it can be applied to the measurement of high concentration aerosols without dilution by choosing an appropriate filter medium. As a result, the centrifugal filter was successfully applied to measure the size distribution of solid particles in size ranging from 0.3 to 10 μm.

Copyright © 2017 American Association for Aerosol Research  相似文献   


9.
The Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are widely used for quantifying submicron aerosol mass concentration and composition, in particular for organic aerosols (OA). Using the standard vaporizer (SV) installed in almost all commercial instruments, a collection efficiency (CE) correction, varying with aerosol phase and chemical composition, is needed to account for particle bounce losses. Recently, a new “capture vaporizer” (CV) has been shown to achieve CE~1 for ambient aerosols, but its chemical detection properties show some differences from the SV due to the increased residence time of particles and vaporized molecules inside the CV. This study reports on the properties and changes of mass spectra of OA in CV-AMS using both AMS and ACSM for the first time. Compared with SV spectra, larger molecular-weight fragments tend to shift toward smaller ions in the CV due to additional thermal decomposition arising from increased residence time and hot surface collisions. Artifact CO+ ions (and to a lesser extent, H2O+), when sampling long chain alkane/alkene-like OA (e.g., squalene) in the CV during the laboratory studies, are observed, probably caused by chemical reactions between sampled OA and molybdenum oxides on the vaporizer surfaces (with the carbon derived from the incident OA). No evidence for such CO+ enhancement is observed for ambient OA. Tracer ion marker fractions (fm/z =, i.e., the ratio of the organic signal at a given m/z to the total OA signal), which are used to characterize the impact of different sources are still present and usable in the CV. A public, web-based spectral database for mass spectra from CV-AMS has been established.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
We developed a laser induced incandescence–mass spectrometric analyzer (LII-MS) for online measurements quantifying the aerosol chemical compositions with respect to the mixing state of black carbon (BC). The LII-MS is developed as a tandem series comprising an LII chamber to detect and vaporize BC-containing particles and a particle trap laser desorption mass spectrometer (PT-LDMS: Takegawa et al. 2012). The PT-LDMS collects aerosol particles transferred from the LII chamber and quantifies the chemical compositions. A newly designed collection probe, coupled with the sheath-air inlet nozzle of the LII chamber, enables a high throughput of aerosol particles without significant dilution. Total aerosol particles can be analyzed in the PT-LDMS by turning off the laser (MS mode), and the aerosol particles externally mixed with BC can be analyzed by turning on the laser (LII-MS mode). The difference in the PT-LDMS signals between the MS and LII-MS modes yields the chemical composition of materials internally mixed with BC. Performance of the developed instrument was evaluated in the laboratory by generating BC particles internally-mixed with oleic acid (OL) and BC particles externally mixed with ammonium sulfate particles. Preliminary results from ambient measurements are also presented and discussed.

Copyright 2014 American Association for Aerosol Research  相似文献   


11.
A novel high-resolution planar and portable differential mobility analyzer (DMA) has been designed and built (Nano-ID® PMC500, Naneum, Canterbury, UK). Finite element multi-physics numerical modeling was employed to optimize the geometry of the DMA and to find a regime for high resolution within the confines of a portable instrument. The numerical approach for solving the Navier–Stokes equation was verified by comparison of calculated data to experimental values. The PMC500 was calibrated and tested with different monodisperse aerosol challenges. The PMC500 portable DMA is shown to have good sizing accuracy and resolution, similar in performance to commercially available desktop instruments.

Copyright 2014 American Association for Aerosol Research  相似文献   


12.
A systematic approach for identifying and quantifying molecular components of complex organic aerosol mixtures is presented. The approach combines methods developed previously for derivatizing carbonyl, hydroxyl, carboxyl, and ester functional groups, which are commonly present in oxidized organic aerosol, with liquid chromatography, UV detection, and chemical ionization-ion trap mass spectrometry. The original derivatization-spectrophotometric methods were modified for compatibility with liquid chromatography and then evaluated by analyzing a variety of standard compounds that contain one or more functional groups. Detection limits for carbonyl, hydroxyl, carboxyl, and ester analysis are approximately 0.003, 0.02, 0.01, and 1 nmole, respectively. Mass spectral analysis of derivatives using isobutane and ammonia as reagent gases for chemical ionization can be used to determine compound molecular weight, and characteristic fragmentation patterns provide structural information for use in compound identification. The methods will be useful for analyzing the chemical composition of secondary organic aerosol (SOA) formed in laboratory studies to obtain information needed to develop quantitative reaction mechanisms that can be incorporated into atmospheric models to better predict the formation, composition, and fate of SOA.

Copyright © 2017 American Association for Aerosol Research  相似文献   


13.
A rectangular slit micro-aerodynamic-lens (μADL) aerosol concentrator operating at atmospheric pressure has been developed. A single stage version has shown concentration ratios of up to 40:1 for 1 μm aerosol particles while particles larger than 2 μm can be concentrated by more than 100:1 in a single stage. The design of this device has been guided by unsteady 3D CFD modeling using detached eddy simulations (DES), and has been validated experimentally using polystyrene spheres and salt crystals of known aerodynamic diameters. The pressure drop in the device does not exceed 1.5 kPa in the major flow and 0.3 kPa in the minor flow at a total flow of 10 slpm.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
We describe a new method for focusing and concentrating a stream of moving micron-sized aerosol particles in air. The focusing and concentrating process is carried out by the combined drag force and optical force that is generated by a double-layer co-axial nozzle and a focused doughnut-shaped hollow laser beam, respectively. This method should supply a new tool for aerosol science and related research.

Copyright © 2018 American Association for Aerosol Research  相似文献   


15.
Microfluidics is used in a broad range of applications, from biology and medicine to chemistry and polymer science, because this versatile platform enables rapid and precise repeatability of measurements and experiments on a relatively low-cost laboratory platform. Despite wide-ranging uses, this powerful research platform remains under-utilized by the atmospheric aerosol science community. This review will summarize selected microfluidic concepts and tools with potential applications to aerosol science. Where appropriate, the basic operating conditions and tunable parameters in microfluidics will be compared to typical aerosol experimental methods. Microfluidics offers a number of advantages over larger-scale experiments; for example, the small volumes of sample required for experiments open a number of avenues for sample collection that are accessible to the aerosol community. Filter extraction, spot sampling, and particle-into-liquid sampling techniques could all be used to capture aerosol samples to supply microfluidic measurements and experiments. Microfluidic concepts, such as device geometries for creating emulsions and developments in particle and droplet manipulation techniques will be reviewed, and current and potential microfluidic applications to aerosol science will be discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


17.
The ability of atmospheric particles to absorb water has extensive climate, atmospheric chemistry, and health implications, and considerable effort has gone into determining relationships between particle composition and hygroscopicity. Parallel techniques, in which co-located composition and hygroscopicity measurements are combined to infer composition-hygroscopicity relationships, may not detect the influence of external mixtures. Previous in-line measurements have been limited to single-particle composition or a limited analyte range, and are often non-quantitative and/or offline. Here, we present for the first time in-series, online, quantitative hygroscopicity-composition measurements using a Brechtel Manufacturing, Inc. Hybrid Tandem Differential Mobility Analyzer and an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This technique is first verified using laboratory-generated external particle mixtures, then extended to ambient measurements at a seaside sampling side at the Hong Kong University of Science and Technology. The technique successfully separated laboratory-generated particles of differing hygroscopicities and showed promise for atmospheric particles, though high mass attenuation endemic to the HTDMA dual size selection limits application to environments with at least ~14–41 μg/m3 of particulate mass, depending on composition.

Copyright © 2017 American Association for Aerosol Research  相似文献   


18.
Accurate exposure assessments are needed to evaluate health hazards caused by airborne microorganisms and require air samplers that efficiently capture representative samples. This highlights the need for samplers with well-defined performance characteristics. While generic aerosol performance measurements are fundamental to evaluate/compare samplers, the added complexity caused by the diversity of microorganisms, especially in combination with cultivation-based analysis methods, may render such measurements inadequate to assess suitability for bioaerosols. Specific performance measurements that take into account the end-to-end sampling process, targeted bioaerosol and analysis method could help guide selection of air samplers.

Nine different samplers (impactors/impingers/cyclones/ electrostatic precipitators/filtration samplers) were subjected to comparative performance testing in this work. Their end-to-end cultivation-based biological sampling efficiencies (BSEs) and PCR-/microscopy-based physical sampling efficiencies (PSEs) relative to a reference sampler (BioSampler) were determined for gram-negative and gram-positive vegetative bacteria, bacterial spores, and viruses.

Significant differences were revealed among the samplers and shown to depend on the bioaerosol's stress–sensitivity and particle size. Samplers employing dry collection had lower BSEs for stress-sensitive bioaerosols than wet collection methods, while nonfilter-based samplers showed reduced PSEs for 1 μm compared to 4 μm bioaerosols. Several samplers were shown to underestimate bioaerosol concentration levels relative to the BioSampler due to having lower sampling efficiencies, although they generally obtained samples that were more concentrated due to having higher concentration factors.

Our work may help increase user awareness about important performance criteria for bioaerosol sampling, which could contribute to methodological harmonization/standardization and result in more reliable exposure assessments for airborne pathogens and other bioaerosols of interest.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
Accurate refractive index values are required to determine the effects of aerosol particles on direct radiative forcing. Theoretical retrievals using extinction data alone or extinction plus absorption data have been simulated to determine the sensitivity of each retrieval. A range of aerosol types with a range of different refractive indices were considered. The simulations showed that the extinction-only retrieval was not able to accurately or precisely retrieve refractive index values, even for purely scattering compounds, but the addition of a simulated absorption measurement greatly improved the retrieval.

Copyright 2014 American Association for Aerosol Research  相似文献   


20.
We introduce a new electrical measurement technique for aerosol detection, based on pulsed unipolar charging followed by a non-contact measurement of the rate of change of the aerosol space charge in a Faraday cage. This technique, which we call “aerosol measurement with induced currents,” has some advantages compared to the traditional method of collecting the charged particles on either an electrode or with a particle filter. We describe the method and illustrate it with a simple and miniature (shirt-pocket-sized) instrument to measure lung-deposited surface area. Aerosol measurement by induced currents can also be applied to more complex devices.

Copyright 2014 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号