首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate exposure assessments are needed to evaluate health hazards caused by airborne microorganisms and require air samplers that efficiently capture representative samples. This highlights the need for samplers with well-defined performance characteristics. While generic aerosol performance measurements are fundamental to evaluate/compare samplers, the added complexity caused by the diversity of microorganisms, especially in combination with cultivation-based analysis methods, may render such measurements inadequate to assess suitability for bioaerosols. Specific performance measurements that take into account the end-to-end sampling process, targeted bioaerosol and analysis method could help guide selection of air samplers.

Nine different samplers (impactors/impingers/cyclones/ electrostatic precipitators/filtration samplers) were subjected to comparative performance testing in this work. Their end-to-end cultivation-based biological sampling efficiencies (BSEs) and PCR-/microscopy-based physical sampling efficiencies (PSEs) relative to a reference sampler (BioSampler) were determined for gram-negative and gram-positive vegetative bacteria, bacterial spores, and viruses.

Significant differences were revealed among the samplers and shown to depend on the bioaerosol's stress–sensitivity and particle size. Samplers employing dry collection had lower BSEs for stress-sensitive bioaerosols than wet collection methods, while nonfilter-based samplers showed reduced PSEs for 1 μm compared to 4 μm bioaerosols. Several samplers were shown to underestimate bioaerosol concentration levels relative to the BioSampler due to having lower sampling efficiencies, although they generally obtained samples that were more concentrated due to having higher concentration factors.

Our work may help increase user awareness about important performance criteria for bioaerosol sampling, which could contribute to methodological harmonization/standardization and result in more reliable exposure assessments for airborne pathogens and other bioaerosols of interest.

Copyright 2014 American Association for Aerosol Research  相似文献   


2.
To assess indoor bioaerosols, a virtual impactor having 1 µm cutoff diameter was designed, fabricated, and evaluated with computational fluid dynamics simulation and also with laboratory test using polystyrene latex particles. Two other cutoff diameters of 635 nm and 1.5 µm were obtained by changing the inlet flow rate and the ratio of minor channel-to-inlet flow rates. In field test, the virtual impactor was operated with varying cutoff diameter and field-emission scanning electron microscope (FE-SEM) analysis was performed for each cutoff diameter to observe morphologies of indoor aerosol particles sampled at the major and minor outlet channels. Particles were sampled at both outlet channels using the SKC Button Aerosol sampler and subsequently cultured. By colony counting, it was found that 56% of cultured fungal particles and 63% of cultured bacterial particles had aerodynamic sizes smaller than 1 µm. MALDI-TOF analysis and visual inspection of culture samples were used to identify indoor bacterial and fungal species, respectively. Nearly same species of bacteria and fungi were detected both in the major and minor flow channels.

© 2017 American Association for Aerosol Research  相似文献   


3.
In bioaerosol monitoring applications, technologies allowing rapid and precise detection of airborne pathogens are highly demanded. One of such technologies, based on the immunoreaction-operating principle in nearly real-time mode without any specific labeling, is known as surface plasmon resonance (SPR). In previous studies, we have shown applicability of the SPR technology for rapid and selective detection of viral and bacterial aerosols where successful combination of the SPR machine with our earlier produced personal bioaerosol sampler opened new prospects in development of portable bioaerosol monitors. The current study is a logical continuation of our previous research dedicated to the technology development for rapid bioaerosol detection. Here, we focus on one of the main factors possibly influencing the SPR-based bioaerosol monitoring; the SPR performance on target bioaerosol detection was evaluated at conditions of substantial air contamination with different nontargeted microorganisms, commonly presented in the air. Besides, different compositions of sampling liquids were tested in regards to the SPR results interference. Our findings clearly verified high specificity of the technology even in cases of highly contaminated air environments with aerosols of biological and mineral origins. It was found that both nontargeted bioaerosols and nanosized aerosols of mineral background do not have significant influence on the specific SPR detection of targeted bioaerosols.

Copyright 2014 American Association for Aerosol Research  相似文献   


4.
A solid particle number limit was applied to the European legislation for diesel vehicles in 2011. Extension to gasoline direct injection vehicles raised concerns because many studies found particles below the lower size limit of the method (23 nm). Here we investigated experimentally the feasibility of lowering this size. A nano condensation nucleus counter system (nCNC) (d50% = 1.3 nm) was used in parallel with condensation particle counters (CPCs) (d50% = 3 nm, 10 nm and 23 nm) at various sampling systems based on ejector or rotating disk diluters and having thermal pre-treatment systems consisting of evaporation tubes or catalytic strippers. An engine exhaust particle sizer (EEPS) measured the particle size distributions. Depending on the losses and thermal pre-treatment of the sampling system, differences of up to 150% could be seen on the final detected particle concentrations when including the particles smaller than 23 nm in diameter. A volatile artefact as particles with diameters below 10 nm was at times observed during the cold start measurements of a 2-stroke moped. The diesel vehicles equipped with the Diesel Particulate Filter (DPF) had a low solid sub-23 nm particles fraction (<20%), the gasoline with direct injection vehicles had higher (35–50%), the gasoline vehicles with port fuel injection and the two mopeds (two and four-stroke) had the majority of particles below 23 nm. The size distributions peaked at 60–80 nm for the DPF equipped vehicles, at 40–90 nm for the gasoline vehicles with a separate nucleation mode peak at approximately 10 nm sometimes. Mopeds peaked at sizes below 50 nm when their aerosol was thermally pre-treated.

© 2017 American Association for Aerosol Research  相似文献   


5.
Continuous ultraviolet germicidal irradiation (UVGI) has been extensively studied, but research on pulsed UVGI (PUVGI) is lacking and has primarily focused on disinfection of solid surfaces or liquids. This study addressed the gap in knowledge on the effectiveness of pulsed UVGI for disinfecting virus-laden calm air, with relevance to indoor rooms. Φ6 bacteriophage (a surrogate used to study communicable enveloped human respiratory viral pathogens such as influenza virus) was aerosolized by a Collison device into an enclosed test chamber, wherein the bioaerosol was exposed to PUVGI. The spectral content and performance of a pulsed white light lamp with a substantial UVC component were defined. Pulsed UV exposure of 10 to 30 s resulted in a two-log reduction in viable recovered virus from filter membranes and cyclone-based samplers. The small differences in Φ6 survival, after 10 to 30 s of exposure, emphasized the difficulty of complete eradication. However, exposure to 10 s of PUVGI resulted in significant reduction of virus viability. The dose–response displayed clear regimes of fast and slow exponential decay. Susceptibility factor for the fast-decay regime of aerosolized Φ6 (Z = 0.24 m2/J) was similar to those reported for influenza A virus aerosols at similar relative humidity. Our study demonstrated the potency of PUVGI against a viral bioaerosol. This has potential implications for the control of infectious bioaerosols in the healthcare setting.

© 2017 American Association for Aerosol Research  相似文献   


6.
Detection of bioaerosols is important in fields ranging from environmental health monitoring to biosurveillance, and current detector weaknesses have motivated the development of new technologies. In this work, a detector was built, which applies the principles of droplet microfluidics to bioaerosol detection. Droplet microfluidics is a subfield of microfluidics based on the creation of monodisperse microdroplets with compartmentalized reagents and supports enhanced assays and fluidic manipulations. The bioaerosol detector operates by aerodynamically focusing aerosols directly into these droplets to harness the benefits of the microreactor environment. A breadboard detector system, which consisted of an aerodynamic focusing lens, aerosol-focusing capillary, microfluidic droplet chip, and optical microscope, was constructed. Computational fluid dynamic simulations and Lagrangian particle tracking modeling were conducted to identify the optimal conditions for focusing. Preliminary experiments, where aerosols were deposited onto a solid substrate, demonstrated sub 200-µm spot diameters for aerodynamic diameters of 2–5 µm. Test aerosols were then generated, and collected into the microfluidic liquid interface on the chip as verified by microscopy. Recovery efficiency of the aerosols was dependent on aerosol size and ranged from about 27% to nearly 100%. Finally, to prove bioaerosol collection and detection, a droplet propidium iodide (PI) assay was performed: the system distinguished between E. coli and non-biological aerosols within 20 s. Overall, this work established the technique of direct collection of bioaerosols into a convenient droplet microfluidic platform for detection.

Copyright © 2017 The Johns Hopkins University Applied Physics Laboratory  相似文献   


7.
Results of a numerical study of the RespiCon sampler performance in the calm air are presented. The air flow is described by the Navier–Stokes equations of axisymmetric stationary viscous flow of incompressible fluid that are numerically integrated by the computational fluid dynamics (CFD) software FLUENT. The collection efficiencies of RespiCon impactor stages agree quite well with experimental data and curves of the European standards for the thoracic and respirable dust fractions. The aspiration efficiencies derived from the numerical model overestimate the experimental data in the range of particle sizes of 10 μm < dp < 40 μm; however, they correctly predict the value of maximal size of aspirated particles. A new design of the RespiCon sampler with a higher volume flow rate was developed.

Copyright 2014 American Association for Aerosol Research  相似文献   


8.
9.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range is developed. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. By measuring particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobility analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. However, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.

Copyright © 2017 American Association for Aerosol Research  相似文献   


10.
Measurement systems for particle sizing starting at 1 nm are used to bridge the gap between mass spectrometer measurements and traditional aerosol sizing methods, and thus to enable measurement of the complete size distribution from molecules and clusters to large particles. Such a measurement can be made using a scanning mobility particle sizer equipped with a diethylene glycol growth engine (e.g., TSI Model 3777 Nano Enhancer) along with a condensation particle counter, and a differential mobility analyzer (DMA) appropriate for such small sizes. Previous researchers have used high-resolution DMA (HRDMA) and also the TSI Nano-DMA (Model 3085) in such a scanning mobility particle sizer system. In this study, we evaluate the performance of the recently introduced TSI 1 nm-DMA (Model 3086). The transfer function was characterized using 1–2 nm monomobile molecular ion standards. The same measurements were repeated on a TSI Nano-DMA, with good agreement to previously published values. From the measured transfer function, the resolution of each DMA model was determined as a function of particle size and sheath flow rate. Resolution of the TSI 3086 in the 1–2 nm range was 10–25% higher than the TSI 3085. Measured resolutions of the TSI 3086 were 10–20% lower than theoretically predicted values, whereas those of the Model 3085 were 0–10% lower.

Copyright © 2018 TSI Inc.  相似文献   


11.
The characteristics of fugitive dust emitted from vehicles traveling on unpaved dirt roads were measured using a suite of instruments including a real-time fugitive dust sampler. The fugitive dust sampler is formed from a combination of a large particle inlet and an optical particle spectrometer that reports particle sizes from 6 to 75 µm. The large particle inlet permits the sampling of particles up to 75 µm with only a moderate dependence of sampling efficiency on wind-speed. Measurements made with the sampler showed that particles as large as ~50 µm were suspended from vehicular movement on the dirt roads, with the mode of the fugitive dust particle number size distribution ~2 µm, while the mass distribution mode was ~7 µm. A comparison of the fugitive dust sampler measurements with those made using standard PM instruments showed that the conventional instruments have a wind-direction bias that can result in under-sampling of large particles. The current measurements suggest that particles suspended from dirt roadways are of importance for local air quality within the near-road environment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


12.
Detection and quantification of dilute viral aerosols, as encountered outside animal housing facilities, requires methods that are able to detect small numbers of viruses in large volumes of air. This study compared the performance of two size-differentiating cascade impactors; an Andersen 8-stage (ACI; 28.3 L/min) and a high volume Tisch (TCI; 1,133 L/min) to assess sampling efficiency for detecting porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Samples of particles sorted by aerodynamic diameter were analyzed by quantitative polymerase chain reaction (qPCR) and collection efficiency was assessed by particle size. Collection media (minimum essential medium [MEM] and beef extract [BE]), elution technique (active versus passive), and sampling times (10, 20, and 30 min) were variables assessed for the TCI sampler. Extraction efficiency was 35% higher with BE as compared to that of MEM (p = 0.0007); active extraction technique was 19% more efficient than the passive technique (p = 0.03); time of sampling did not significantly affect the amount of virus recovered. The ACI sampler was more efficient in detecting both viruses from small and medium sized airborne particles (≤3 μm) as compared to the TCI sampler (p < 0.001). The latter sampler, however, was more efficient at IAV detection from large airborne particles (>3 μm) (p = 0.0025) indicating the potential of this sampler in detecting the presence of small amounts of viruses in aerosols under field conditions.

© 2017 American Association for Aerosol Research  相似文献   


13.
Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. When operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. The time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.

Copyright © 2017 American Association for Aerosol Research  相似文献   


14.
The objective of the present study was to characterize the performance of a federal reference method (FRM) PM10 size-selective inlet using analysis methods designed to minimize uncertainty in measured sampling efficiencies for large particles such as those most often emitted from agricultural operations. The performance of an FRM PM10 inlet was characterized in a wind tunnel at a wind speed of 8 km/h. Data were also collected for 20 and 25 μm particles at wind speeds of 2 and 24 km/h. Results of the present sampler evaluation compared well with those of previous studies for a similar inlet near the cutpoint, and the sampler passed the criteria required for certification as a FRM sampler when tested at 8 km/h. Sampling effectiveness values for particles with nominal diameters of 20 and 25 μm exceeded 3% for 8 and 24 km/h wind speeds in the present study and were statistically higher than both the “ideal” PM10 sampler (as defined in 40 CFR 53) and the ISO (1995) standard definition of thoracic particles (p < 0.05) for 25 μm particles leading to the potential for significant sampling bias relative to the “ideal” PM10 sampler when measuring large aerosols.

Copyright 2014 American Association for Aerosol Research  相似文献   


15.
Objectives: The aim of this study was to evaluate the effect of bioactive glass–ceramic particles (Biosilicate®) addition on surface nanoroughness and topography of Resin-modified glass ionomer cements (RMGICs).

Methods: Experimental materials were made by incorporating 2 wt% of Biosilicate® into Fuji II LC® (FL) and Vitremer® (VT) powders. Disks of RMGICs (with and without Biosilicate®) measuring 0.5 cm (diameter) × 0.5 mm (thickness) were fabricated and polished. Samples were stored at 37 °C in dry or immersed in distilled water for 30 days. Digital images (20 × 20 μm) from the surfaces were obtained by means of an atomic force microscopy. Three images were acquired for each sample, and four nanoroughness measurements were performed in each image. Nanoroughness (Ra, nm) was assessed by Nanoscope Software V7. Data were analyzed with ANOVA and Student–Newman–Keuls multiple comparisons (p < 0.05). SEM images were obtained for surface topography analysis.

Results: FL was significantly rougher than VT (p < 0.05) in wet and dry conditions. The addition of Biosilicate® increased the surface roughness in VT and decreased in FL, regardless of the storage media (p ≤ 0.05). No differences existed between materials and storage conditions after Biosilicate® addition. Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.

Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.  相似文献   


16.
The adverse health effect of acidic ultrafine particles (AUFPs) has been widely recognized in scientific societies. These particles mainly deposit on the surface by diffusion and so far there is no mature method for the measurement of airborne AUFPs. The purpose of this study was to develop a diffusion sampler (DS) with iron nanofilm detectors to effectively measure the number concentration and size distribution of airborne AUFPs in indoor and outdoor environments. The developed DS was made of stainless steel with a flat and rectangular channel with 1.0 mm height, 50 mm width, and 500 mm length. The iron nanofilm detectors were deployed on rectangular recesses inside the sampler at three different locations along the length of the channel to collect the ultrafine particles. The exposed detectors were then scanned using an atomic force microscope (AFM) to numerate and distinguish the AUFPs from the nonacidic UFPs. Prior to sampling, the semi-empirical equations for the diffusive deposition efficiency of particles at the different detector locations in the sampler were obtained on the basis of theoretical diffusive mechanism and modified by the experimental data using polystyrene latex (PSL) standard particles. After calibration, the DS + AFM method and a commercially available online measurement system, i.e., scanning mobility particle sizer (SMPS) incorporated with a condensation particle counter (CPC), were simultaneously used in a 4-week field measurement. Both methods showed very good agreement in terms of total particle number concentration and size distribution. The results indicate that the diffusion sampler is effective for the quantification of ambient acidic ultrafine particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
Laser-induced incandescence (LII) measurements were conducted to explore the ability of LII to detect small soot particles of less than 10 nm in two sooting flat premixed flames of n-butane: a so-called nucleation flame obtained at a threshold equivalence ratio Φ = 1.75, in which the incipient soot particles undergo only minor soot surface growth along the flame, and a more sooting flame at Φ = 1.95. Size measurements were obtained by modeling the time-resolved LII signals detected using 1064 nm laser excitation. Spectrally-resolved LII signals collected in the nucleation flame display a similar blackbody-like behavior as mature soot. Soot particle temperature was determined from spectrally-resolved detection. LII modeling was conducted using parameters either relevant to those of mature soot or derived from fitting the modeled results to the experimental LII data. Particle size measurements were also carried out using (1) ex situ analysis by helium-ion microscopy (HIM) of particles sampled thermophoretically and (2) online size distribution analysis of microprobe-sampled particles using a 1 nm-SMPS. The size distributions of the incipient soot particles, found in the nucleation flame and in the early soot region of the Φ = 1.95 flame, derived from time-resolved LII signals are in good agreement with HIM and 1 nm-SMPS measurements and are in the range of 2–4 nm. The thermal and optical properties of incipient soot were found to be not radically different from those of mature soot commonly used in LII modeling. This explains the ability of incipient soot particles to produce continuous thermal emissions in the visible spectrum. This study demonstrates that LII is a promising in situ optical particle sizing technique that is capable of detecting incipient soot as small as about 2.5 nm and potentially 2 nm and resolving small changes in soot sizes below 10 nm.

© 2017 American Association for Aerosol Research  相似文献   


18.
Near traffic routes and urban areas, the outdoor air particle number concentration is typically dominated by ultrafine particles. These particles can enter into the nearby buildings affecting the human exposure on ultrafine particles indoors. In this study, we demonstrate an aerosol generation system which mimics the characteristic traffic related aerosol. The aerosol generation system was used to determine the size-resolved particle filtration efficiencies of five typical commercial filters in the particle diameter range of 1.3–240 nm. Two different HEPA filters were observed to be efficient in all particle sizes. A fibrous filter (F7) was efficient at small particle sizes representing the nucleation mode of traffic related aerosol, but its efficiency decreased down to 60% with the increasing particle size. In contrast, the filtration efficiency of an electrostatic precipitator (ESP) increased as a function of the particle size, being more efficient for the soot mode of traffic related aerosol than for the nucleation mode. An electret filter with a charger was relatively efficient (filtration efficiency >85%) at all the observed particle sizes. The HEPA, F7 and electret filters were found to practically remove the particles/nanoclusters smaller than 3 nm. All in all, the filtration efficiencies were observed to be strongly dependent on the particle size and significant differences were found between different filters. Based on these results, we suggest that the particulate filter test standards should be extended to cover the ultrafine particles, which dominate the particle concentrations in outdoor air and are hazardous for public health.

Copyright © 2017 American Association for Aerosol Research  相似文献   


19.
The CIP 10-M personal sampler measures worker exposure to airborne particles by collecting particles in a rotating metal cup containing a few milliliters of a collection fluid. This device is mainly used to sample microorganisms or microbial components to measure bioaerosol concentrations in various occupational environments. Aqueous liquids are generally used, but their rapid evaporation limits the duration of sampling; alternative collection fluids could alleviate this problem. Indeed, the particle-collection efficiency of the rotating cup has not been extensively studied, and the only data available relate to a discontinued model. This study aimed to measure the collection efficiency of the current rotating cup model containing an aqueous (water) or viscous (ViaTrap mineral oil) collection fluid. The kinetics of evaporation confirmed that ViaTrap does not evaporate, making 8-h sampling campaigns in constant volumes feasible. Particles with a wide range of aerodynamic diameters (between around 0.1 and 10 µm) were produced using various test rigs and mono- or polydisperse test aerosols. Both new and older cup models performed similarly, with a collection efficiency of >80% for larger particles (aerodynamic diameters >2.8 µm), progressively decreasing to around 50% for aerodynamic diameters of 2.1 µm; with aerodynamic diameters of <1 µm, the collection efficiency was generally <10%. In physical terms, collection efficiency was unaffected by the type (aqueous or viscous) or volume (between 0 and 3 mL) of collection fluid used. Bias maps indicated that the inhalable fraction may be underestimated in occupational settings, particularly with aerosols mainly composed of particles with aerodynamic diameters of less than around 3 µm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


20.
Nanosized silica size standards produced with a sol–gel synthesis process were evaluated for particle size, effective density, and refractive index in this study. Particle size and effective density measurements were conducted following protocol from the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. Particle sizes were measured via electrical mobility analysis using a differential mobility analyzer (DMA) at sheath flow rates (Qsh) of 3.0 and 6.0 L/min and a constant aerosol flow rate (Qa) of 0.3 L/min. The measured mean and mode diameters agreed well with the labeled sizes in the size range 40–200 nm, with differences ranging from 0.03% to 0.8%, well within the labeled expanded uncertainties (95% confidence intervals) of 1.8%–2.2%. The coefficient of variation (CV) of the size distribution was 0.012–0.027 for 40–200 nm. Particle sizes measured for 20 nm and 30 nm standards showed size differences with respect to the certified sizes of 1.7% and 8.3% at Qsh = 6.0 L/min, but the size distributions were narrow, with CV = 0.047–0.064. The average effective density for the range 40–200 nm measured with an aerosol particle mass analyzer (APM) was 1.9 g/cm3. The real component of the refractive index measured with an optical particle counter (OPC) was 1.41 at a wavelength of 633 nm. All properties (size, effective density, and refractive index) were stable and could be measured with good repeatability. From these evaluations, it was found that the nanosized silica size standards have good characteristics for use as size standards and constitute a feasible alternative to PSL particles.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号