首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying forest above ground carbon content using LiDAR remote sensing   总被引:1,自引:0,他引:1  
The UNFCCC and interest in the source of the missing terrestrial carbon sink are prompting research and development into methods for carbon accounting in forest ecosystems. Here we present a canopy height quantile-based approach for quantifying above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-return, small-footprint airborne LiDAR. Fieldwork was conducted in Monks Wood National Nature Reserve UK to estimate the AGCC of five stands from forest mensuration and allometric relations. In parallel, a digital canopy height model (DCHM) and a digital terrain model (DTM) were derived from elevation measurements obtained by means of an Optech Airborne Laser Terrain Mapper 1210. A quantile-based approach was adopted to select a representative statistic of height distributions per plot. A forestry yield model was selected as a basis to estimate stemwood volume per plot from these heights metrics. Agreement of r=0.74 at the plot level was achieved between ground-based AGCC estimates and those derived from the DCHM. Using a 20×20 m grids superposed to the DCHM, the AGCC was estimated at the stand level and at the woodland level. At the stand level, the agreement between the plot data upscaled in proportion to area and the LiDAR estimates was r=0.85. At the woodland level, LiDAR estimates were nearly 24% lower than those from the upscaled plot data. This suggests that field-based approaches alone may not be adequate for carbon accounting in heterogeneous forests. Conversely, the LiDAR 20×20 m grid approach has an enhanced capability of monitoring the natural variability of AGCC across the woodland.  相似文献   

2.
In even-aged, single species conifer plantations LiDAR height data can be modelled to provide accurate estimates of tree height and volume. However, it is apparent that growth models developed for single species stands are not directly transferable to a more general situation of mixed species plantations. This paper evaluates the ability of small footprint, dual-return, pulsed airborne LiDAR data to estimate the proportion of the productive species when mixed with a nurse crop in closed canopy plantations. A study area located in Galloway Forest District in Scotland is used as an example of Lodgepole pine and Sitka spruce mixed plantation; this area contains good examples of a wide range of pure and mixed species plantation types. Three species groups are studied: areas of pure Sitka spruce, areas of pure Lodgepole pine and areas where the two species have been planted together. Two approaches are assessed for detection of plantation mixtures: the first uses LiDAR intensity data to separate spruce and pine species and the second uses LiDAR-derived canopy density measures, coefficient of variation, skewness, percent of ground returns (which provides a measure of canopy openness) and the mean canopy height, which enables areas with height variations to be identified. From analysis of LiDAR data extracted from 54 study plots using logistic regression, the coefficient of variation and LiDAR intensity data provide the most useful predictors of the proportion of spruce in a pine/spruce mixture with coefficients of determination (R2) of 0.914 and 0.930 respectively. The method could be developed as a mapping tool, which in combination with existing inventory data should help to improve timber volume forecasting for mixed species even-aged plantations.  相似文献   

3.
Scanning Light Detecting and Ranging (LiDAR), Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) were analyzed to determine (1) which of the three sensor systems most accurately predicted forest biomass, and (2) if LiDAR and SAR/InSAR data sets, jointly considered, produced more accurate, precise results relative to those same data sets considered separately. LiDAR ranging measurements, VHF-SAR cross-sectional returns, and X- and P-band cross-sectional returns and interferometric ranges were regressed with ground-estimated (from dbh) forest biomass in ponderosa pine forests in the southwestern United States. All models were cross-validated. Results indicated that the average canopy height measured by the scanning LiDAR produced the best predictive equation. The simple linear LiDAR equation explained 83% of the biomass variability (n = 52 plots) with a cross-validated root mean square error of 26.0 t/ha. Additional LiDAR metrics were not significant to the model. The GeoSAR P-band (λ = 86 cm) cross-sectional return and the GeoSAR/InSAR canopy height (X-P) captured 30% of the forest biomass variation with an average predictive error of 52.5 t/ha. A second RaDAR-FOPEN collected VHF (λ ∼ 7.8 m) and cross-polarized P-band (λ = 88 cm) cross-sectional returns, none of which proved useful for forest biomass estimation (cross-validated R2 = 0.09, RMSE = 63.7 t/ha). Joint consideration of LiDAR and RaDAR measurements produced a statistically significant, albeit small improvement in biomass estimation precision. The cross-validated R2 increased from 83% to 84% and the prediction error decreased from 26.0 t/ha to 24.9 t/ha when the GeoSAR X-P interferometric height is considered along with the average LiDAR canopy height. Inclusion of a third LiDAR metric, the 60th decile height, further increased the R2 to 85% and decreased the RMSE to 24.1 t/ha. On this 11 km2 ponderosa pine study area, LiDAR data proved most useful for predicting forest biomass. RaDAR ranging measurements did not improve the LiDAR estimates.  相似文献   

4.
In this study, a combination of low and high density airborne LiDAR and satellite SPOT-5 HRG data were used in conjunction with ground measurements of forest structure to parameterize four models for zero-plane displacement height d(m) and aerodynamic roughness length z0m(m), over cool-temperate forests in Heihe River basin, an arid region of Northwest China. For the whole study area, forest structural parameters including tree height (Ht) (m), first branch height (FBH) (m), crown width (CW) (m) and stand density (SD)(trees ha− 1) were derived by stepwise multiple linear regressions of ground-based forest measurements and height quantiles and fractional canopy cover (fc) derived from the low density LiDAR data. The high density LiDAR data, which covered a much smaller area than the low density LiDAR data, were used to relate SPOT-5's reflectance to the effective plant area index (PAIe) of the forest. This was done by linear spectrum decomposition and Li-Strahler geometric-optical models. The result of the SPOT-5 spectrum decomposition was applied to the whole area to calculate PAIe (and leaf area index LAI). Then, four roughness models were applied to the study area with these vegetation data derived from the LiDAR and SPOT-5 as input. For validation, measurements at an eddy covariance site in the study area were used. Finally, the four models were compared by plotting histograms of the accumulative distribution of modeled d and z0m in the study area. The results showed that the model using by frontal area index (FAI) produced best d estimate, and the model using both LAI and FAI generated the best z0m. Furthermore, all models performed much better when the representative tree height was Lorey's mean height instead of using an arithmetic mean.  相似文献   

5.
In the present study, the suitability of optical ASTER satellite data (with 9 spectral bands) for estimating the biomass of boreal forest stands in mineral soils was tested. The remote sensing data were analysed and tested together with standwise forest inventory data. Stand volume estimates were converted to aboveground tree biomass using biomass expansion factors, and the aboveground biomass of understory vegetation was predicted according to the stand age. Non-linear regression analysis and neural networks were applied to develop models for predicting biomass according to standwise ASTER reflectance. All ASTER bands appeared to be sensitive to tree biomass, in particular the green band 1. The relative estimation errors (RMSEr) of the total aboveground biomass of the forest stands were 44.7% and 41.0% using multiple regression analysis and neural networks, respectively. Although the estimation errors remained large, the predictions were relatively accurate in comparison to previous studies. Furthermore, the predictions obtained here were significantly close to the municipality-level mean values provided by the National Forest Inventory of Finland.  相似文献   

6.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

7.
Aboveground biomass (AGB; Mg/ha) is defined in this study as a biomass of growing stock trees greater than 2.5 cm in diameter at breast height (dbh) for stands >5 years and all trees taller than 1.3 m for stands <5 years. Although AGB is an important variable for evaluating ecosystem function and structure across the landscape, such estimates are difficult to generate without high-resolution satellite data. This study bridges the application of remote sensing techniques with various forest management practices in Chequamegon National Forest (CNF), Wisconsin, USA by producing a high-resolution stand age map and a spatially explicit AGB map. We coupled AGB values, calculated from field measurements of tree dbh, with various vegetation indices derived from Landsat 7 ETM+ data through multiple regression analyses to produce an initial biomass map. The initial biomass map was overlaid with a land-cover map to generate a stand age map. Biomass threshold values for each age category (e.g., young, intermediate, and mature) were determined through field observations and frequency analysis of initial biomass estimates by major cover types. We found that AGB estimates for hardwood forests were strongly related to stand age and near-infrared reflectance (r2=0.95) while the AGB for pine forests was strongly related to the corrected normalized difference vegetation index (NDVIc; r2=0.86). Separating hardwoods from pine forests improved the AGB estimates in the area substantially, compared to overall regression (r2=0.82). Our AGB results are comparable to previously reported values in the area. The total amount of AGB in the study area for 2001 was estimated as 3.3 million metric tons (dry weight), 76.5% of which was in hardwood and mixed hardwood/pine forests. AGB ranged from 1 to 358 Mg/ha with an average of 70 and a standard deviation of 54 Mg/ha. The AGB class with the highest percentage (16.1%) was between 81 and 100 Mg/ha. Forests with biomass values >200 Mg/ha accounted for less than 3% of the study area and were usually associated with mature hardwood forests. Estimated AGB was validated using independent field measurements (R2=0.67, p<0.001). The AGB and age maps can be used as baseline information for future landscape level studies such as quantifying the regional carbon budget, accumulating fuel, or monitoring management practices.  相似文献   

8.
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona and southern New Mexico (> 200,000 km2). MISR red band bidirectional reflectance estimates in nine views mapped to a 250 m grid were used to adjust the Simple Geometric-optical Model (SGM). The soil-understory background signal was partly decoupled a priori by developing regression relationships with the nadir camera blue, green, and near-infrared reflectance data and the isotropic, geometric, and volume scattering kernel weights of the LiSparse–RossThin kernel-driven bidirectional reflectance distribution function (BRDF) model adjusted against MISR red band data. The SGM's mean crown radius and crown shape parameters were adjusted using the Praxis optimization algorithm, allowing retrieval of fractional crown cover and mean canopy height, and estimation of aboveground woody biomass by linear rescaling of the dot product of cover and height. Retrieved distributions of crown cover, mean canopy height, and aboveground woody biomass for forested areas showed good matches with maps from the United States Department of Agriculture (USDA) Forest Service, with R2 values of 0.78, 0.69, and 0.81, and absolute mean errors of 0.10, 2.2 m, and 4.5 tons acre- 1 (10.1 Mg ha- 1), respectively, after filtering for high root mean square error (RMSE) on model fitting, the effects of topographic shading, and the removal of a small number of outliers. This is the first use of data from the MISR instrument to produce maps of crown cover, canopy height, and woody biomass over a large area by seeking to exploit the structural effects of canopies reflected in the observed anisotropy patterns in these explicitly multiangle data.  相似文献   

9.
At present, the greatest source of uncertainty in the global carbon cycle is in the terrestrial ecosystems. In order to reduce these uncertainties it is necessary to provide consistent and accurate global estimates of the world forest biomass. One of the most promising methods for obtaining such estimates is through polarimetric SAR backscatter measurements at low frequencies. In this paper, the relation between polarimetric SAR backscatter at L- and P-bands and forest biomass is investigated using data acquired within the BioSAR-I campaign in southern Sweden during 2007. Methods for estimating biomass on stand level using these data are developed and evaluated, and the results for the two frequency bands are compared. For L-band data, the best results were obtained using HV-polarized backscatter only, giving estimation errors in terms of root mean square errors (RMSE) between 31% and 46% of the mean biomass for stands with biomass ranging from 10 to 290 t/ha, and an (adjusted) coefficient of determination (R2) between 0.4 and 0.6. For P-band data, the results are better than for L-band. Models using HV- or HH-polarized P-band backscatter give similar results, as does a model including both HV and HH. The RMSEs were between 18 and 27%, and the R2 values were between 0.7 and 0.8.  相似文献   

10.
There is a need for accurate inventory methods that produce relevant and timely information on the forest resources and carbon stocks for forest management planning and for implementation of national strategies under the United Nations Collaborative Program on Reduced Emissions from Deforestation and Forest Degradation in Developing Countries (REDD). Such methods should produce information that is consistent across various geographical scales. Airborne scanning Light Detection and Ranging (LiDAR) is among the most promising remote sensing technologies for estimation of forest resource information such as timber volume and biomass, while acquisition of three dimensional data with Interferometric Synthetic Aperture Radar (InSAR) from space is seen as a relevant option for inventory in the tropics because of its ability to “see through the clouds” and its potential for frequent updates at low costs. Based on a stratified probability sample of 201 field survey plots collected in a 960 km2 boreal forest area in Norway, we demonstrate how total above-ground biomass (AGB) can be estimated at three distinct geographical levels in such a way that the estimates at a smaller level always sum up to the estimate at a larger level. The three levels are (1) a district (the entire study area), (2) a village, local community or estate level, and (3) a stand or patch level. The LiDAR and InSAR data were treated as auxiliary information in the estimation. At the two largest geographical levels model-assisted estimators were employed. A model-based estimation was conducted at the smallest level. Estimates of AGB and corresponding error estimates based on (1) the field sample survey were compared with estimates obtained by using (2) LiDAR and (3) InSAR data as auxiliary information. For the entire study area, the estimates of AGB were 116.0, 101.2, and 111.3 Mg ha−1, respectively. Corresponding standard error estimates were 3.7, 1.6, and 3.2 Mg ha−1. At the smallest geographical level (stand) an independent validation on 35 large field plots was carried out. RMSE values of 17.1-17.3 Mg ha−1 and 42.6-53.2 Mg ha−1 were found for LiDAR and InSAR, respectively. A time lag of six years between acquisition of InSAR data and field inventory has introduced some errors. Significant differences between estimates and reference values were found, illustrating the risk of using pure model-based methods in the estimation when there is a lack of fit in the models. We conclude that the examined remote sensing techniques can provide biomass estimates with smaller estimated errors than a field-based sample survey. The improvement can be highly significant, especially for LiDAR.  相似文献   

11.
Large areas of the world's coastal marine environments remain poorly characterized because they have not been mapped with sufficient accuracy and at spatial resolutions high enough to support a wide range of societal needs. Expediting the rate of seafloor mapping requires the collection of multi-use datasets that concurrently address hydrographic charting needs and support decision-making in ecosystem-based management. While active optical and acoustic sensors have previously been compared for the purpose of hydrographic charting, few studies have evaluated the performance and cost effectiveness of these systems for providing benthic habitat maps. Bathymetric and intensity data were collected in shallow water (< 50 m depth) coral reef ecosystems using two conventional remote sensing technologies: (1) airborne Light Detection and Ranging (LiDAR), and (2) ship-based multibeam (MBES) Sound Navigation and Ranging (SoNAR). A comparative assessment using a suite of twelve metrics demonstrated that LiDAR and MBES were equally capable of discriminating seafloor topography (r = > 0.9), although LiDAR depths were found to be consistently shallower than MBES depths. The intensity datasets were not significantly correlated at a broad 4 × 5 km spatial scale (r = − 0.11), but were moderately correlated in flat areas at a fine 4 × 500 m spatial scale (r = 0.51), indicating that the LiDAR intensity algorithm needs to be improved before LiDAR intensity surfaces can be used for habitat mapping. LiDAR cost 6.6% less than MBES and required 40 fewer hours to map the same study area. MBES provided more detail about the seafloor by fully ensonifying high-relief features, by differentiating between fine and coarse sediments and by collecting data with higher spatial resolutions. Surface fractal dimensions and fast Fourier transformations emerged as useful methods for detecting artifacts in the datasets. Overall, LiDAR provided a more cost effective alternative to MBES for mapping and monitoring shallow water coral reef ecosystems (< 50 m depth), although the unique advantages of MBES may make it a more appropriate choice for answering certain ecological or geological questions requiring very high resolution data.  相似文献   

12.
A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed models relating field-measured response variables to plot attributes serving as the predictor variables. The plot attributes came from intersecting plot coordinates with geospatial datasets. Consequently, these models serve as mapping models. The geospatial predictor variables included Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; land cover proportions and other data from the National Land Cover Dataset (NLCD); topographic variables; monthly and annual climate parameters; and other ancillary variables. We segmented the mapping models for the U.S. into 65 ecologically similar mapping zones, plus Alaska and Puerto Rico. First, we developed a forest mask by modeling the forest vs. nonforest assignment of field plots as functions of the predictor layers using classification trees in See5©. Secondly, forest biomass models were built within the predicted forest areas using tree-based algorithms in Cubist©. To validate the models, we compared field-measured with model-predicted forest/nonforest classification and biomass from an independent test set, randomly selected from available plot data for each mapping zone. The estimated proportion of correctly classified pixels for the forest mask ranged from 0.79 in Puerto Rico to 0.94 in Alaska. For biomass, model correlation coefficients ranged from a high of 0.73 in the Pacific Northwest, to a low of 0.31 in the Southern region. There was a tendency in all regions for these models to over-predict areas of small biomass and under-predict areas of large biomass, not capturing the full range in variability. Map-based estimates of forest area and forest biomass compared well with traditional plot-based estimates for individual states and for four scales of spatial aggregation. Variable importance analyses revealed that MODIS-derived information could contribute more predictive power than other classes of information when used in isolation. However, the true contribution of each variable is confounded by high correlations. Consequently, excluding any one class of variables resulted in only small effects on overall map accuracy. An estimate of total C pools in live forest biomass of U.S. forests, derived from the nationwide biomass map, also compared well with previously published estimates.  相似文献   

13.
Height and intensity information derived from Airborne Laser Scanning (ALS) was used to obtain a quantitative vertical stratification of vegetation in a multi-layered Mediterranean ecosystem. A new methodology for the separation of different vegetation strata was implemented using supervised classification of a two-dimensional feature space spanned by ALS return height (terrain corrected) and intensity. The classification was carried out using Gaussian mixture models tuned on a control plot. The approach was validated using extensive field measurements from treated plots, ranging from single vegetation strata to a more complex multi-layered ecosystem. Plot-level canopy profiles derived from ALS and from a geometric reconstruction based on field measurements were in very good agreement, with correlation coefficients ranging from 0.73 (for complex, 3-layered) to 0.96 (simple, single-layered). In addition, it was possible to derive plot-level information on layer height, vertical extent and coverage with absolute accuracies of some decimetres (simple plots) to a meter (complex plots) for both height and vertical extent and about 10 to 15% for layer coverage. The approach was then used to derive maps of the layer height, vertical extent and percentage of ground cover for a larger area, and classification accuracy was evaluated on a per-pixel basis. The method performed best for single-layered plots or dominant layers on multi-layered plots, obtaining an overall accuracy of 80 to 90%. For subdominant layers in the more complex plots, accuracies obtained were as low as 48%.Our results demonstrate the possibility of deriving qualitative (presence and absence of specific vegetation layers) and quantitative, physical data (height, vertical extent and ground cover) describing the vertical structure of complex multi-layered forest ecosystems using ALS-based height and intensity information.  相似文献   

14.
A ground-based, upward-scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stem count density (stems/area), basal area, and above-ground woody biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest structural parameters retrieved using EVI data with extensive ground measurements, we found excellent agreement at the site level using five EVI scans (plots) per site (R2 = 0.94-0.99); very good agreement at the plot level for stem count density and biomass (R2 = 0.90-0.85); and good agreement at the plot level for mean DBH and basal area (R2 = 0.48-0.66). The observed variance at site and plot levels suggest that a sample area of at least 1 ha (104 m2) is required to estimate these parameters accurately at the stand level using either lidar-based or conventional methods. The algorithms and procedures used to retrieve these structural parameters are dependent on the unique ability of the Echidna® lidar to digitize the full waveform of the scattered lidar pulse as it returns to the instrument, which allows consistent separation of scattering by trunks and large branches from scattering by leaves. This successful application of ground-based lidar technology opens the door to rapid and accurate measurement of biomass and timber volume in areal sampling scenarios and as a calibration and validation tool for mapping biomass using airborne or spaceborne remotely sensed data.  相似文献   

15.
ABSTRACT

Urban vegetation can help to offset carbon emissions. However, urban vegetation cover is vulnerable to urbanization. This study attempts to detect the change in vegetation cover and to quantify its impact on aboveground carbon (AGC) stocks in Auckland, New Zealand, between 1989 and 2014. Field-measured vegetation parameters were used to calculate the amount of carbon stored in plants at the plot-level. Plot-level AGC stocks were linked with vegetation spectral/structural features derived from Landsat images and Light Detection and Ranging (LiDAR) data. These data were also used to map vegetation cover and to estimate AGC stock. Vegetation cover decreased from 394.0 km2 in 1989 to 379.4 km2 in 2014. AGC stock in 1989 was estimated at 1,001,184 Mg C from Landsat 4 data. The total AGC in 2014 was estimated at 1,459,530 Mg C from Landsat 8 data. Thus, total AGC stock increased by 458,346 Mg C (45.8%) in spite of a 3.7% decrease in vegetation cover (14.6 km2) during the same period. The increase in AGC stock was derived partly from tree growth and tree plantings. Vegetation growth contributed more to the increase in AGC stock than its gain from non-vegetation to vegetation changes. The AGC stored in trees and shrubs estimated at 1,333,011 Mg C from the 2014 Landsat data is 5.7% lower than 1,414,607 Mg C estimated from the 2013 LiDAR data, due to the inability of optical imagery to capture the sub-canopy structure of forests and the saturation effect. Thus, LiDAR data provided a more accurate estimate of AGC stock, especially when the stock density is high (e.g. >97.9 Mg C ha–1).  相似文献   

16.
Sustainable rangeland stewardship calls for synoptic estimates of rangeland biomass quantity (kg dry matter ha− 1) and quality [carbon:nitrogen (C:N) ratio]. These data are needed to support estimates of rangeland crude protein in forage, either by percent (CPc) or by mass (CPm). Biomass derived from remote sensing data is often compromised by the presence of both photosynthetically active (PV) and non-photosynthetically active (NPV) vegetation. Here, we explicitly quantify PV and NPV biomass using HyMap hyperspectral imagery. Biomass quality, defined as plant C:N ratio, was also estimated using a previously published algorithm. These independent algorithms for forage quantity and quality (both PV and NPV) were evaluated in two northern mixed-grass prairie ecoregions, one in the Northwestern Glaciated Plains (NGGP) and one in the Northwestern Great Plains (NGP). Total biomass (kg ha− 1) and C:N ratios were mapped with 18% and 8% relative error, respectively. Outputs from both models were combined to quantify crude protein (kg ha− 1) on a pasture scale. Results suggest synoptic maps of rangeland vegetation mass (both PV and NPV) and quality may be derived from hyperspectral aerial imagery with greater than 80% accuracy.  相似文献   

17.
18.
This paper presents a method for mapping fuel types using LiDAR and multispectral data. A two-phase classification method is proposed to discriminate the fuel classes of the Prometheus classification system, which is adapted to the ecological characteristics of the European Mediterranean basin. The first step mapped the main fuel groups, namely grass, shrub and tree, as well as non-fuel classes. This phase was carried out using a Support Vector Machine (SVM) classification combining LiDAR and multispectral data. The overall accuracy of this classification was 92.8% with a kappa coefficient of 0.9. The second phase of the proposed method focused on discriminating additional fuel categories based on vertical information provided by the LiDAR measurements. Decision rules were applied to the output of the SVM classification based on the mean height of LiDAR returns and the vertical distribution of fuels, described by the relative LiDAR point density in different height intervals. The final fuel type classification yielded an overall accuracy of 88.24% with a kappa coefficient of 0.86. Some confusion was observed between fuel types 7 (dense tree cover presenting vertical continuity with understory vegetation) and 5 (trees with less than 30% of shrub cover) in some areas covered by Holm oak, which showed low LiDAR pulses penetration so that the understory vegetation was not correctly sampled.  相似文献   

19.
Accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, wildfire behavior, and for forest management. Lidar remote sensing has been used successfully to estimate live biomass, but studies focusing on dead biomass are rare. We used lidar data, in conjunction with field measurements from 58 plots to distinguish between and map standing live and dead tree biomass in the mixed coniferous forest of the North Rim of Grand Canyon National Park, USA. Lidar intensity and canopy volume were key variables for estimating live biomass, whereas for dead biomass, lidar intensity alone was critical for accurate estimation. Regression estimates of both live and dead biomass ranged between 0 and 600 Mg ha− 1, with means of 195.08 Mg ha− 1 and 65.73 Mg ha− 1, respectively. Cross validation with field data resulted in correlation coefficients for predicted vs. observed of 0.85 for live biomass (RMSE = 50 Mg ha− 1 and %RMSE (RMSE as a percent of the mean) = 26). For dead biomass, correlation was 0.79, RMSE was 42 Mg ha− 1, and %RMSE was 63. Biomass maps revealed interesting patterns of live and dead standing tree biomass. Live biomass was highest in the ponderosa pine zone, and decreased from south to north through the mixed conifer and spruce-fir forest zones. Dead biomass exhibited a background range of values in these mature forests from zero to 100 Mg ha− 1, with lower values in locations having higher live biomass. In areas with high dead biomass values, live biomass was near zero. These areas were associated with recent wildfires, as indicated by fire maps derived from the Monitoring Trends in Burn Severity Project (MTBS). Combining our dead biomass maps with the MTBS maps, we demonstrated the complementary power of these two datasets, revealing that MTBS burn intensity class can be described quantitatively in terms of dead biomass. Assuming a background range of dead biomass up to 100 Mg ha− 1, it is possible to estimate and map the contribution to the standing dead tree biomass pool associated with recent wildfire.  相似文献   

20.
In this paper, we explored fusion of structural metrics from the Laser Vegetation Imaging Sensor (LVIS) and spectral characteristics from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) for biomass estimation in the Sierra Nevada. In addition, we combined the two sensors to map species-specific biomass and stress at landscape scale. Multiple endmember spectral mixture analysis (MESMA) was used to classify vegetation from AVIRIS images and obtain sub-pixel fractions of green vegetation, non-photosynthetic vegetation, soil, and shade. LVIS metrics, AVIRIS spectral indices, and MESMA fractions were compared with field measures of biomass using linear and stepwise regressions at stand (1 ha) level. AVIRIS metrics such as water band indices and shade fractions showed strong correlation with LVIS canopy height (r2 = 0.69, RMSE = 5.2 m) and explained around 60% variability in biomass. LVIS variables were found to be consistently good predictors of total and species specific biomass (r2 = 0.77, RMSE = 70.12 Mg/ha). Prediction by LVIS after species stratification of field data reduced errors by 12% (r2 = 0.84, RMSE = 58.78 Mg/ha) over using LVIS metrics alone. Species-specific biomass maps and associated errors created from fusion were different from those produced without fusion, particularly for hardwoods and pines, although mean biomass differences between the two techniques were not statistically significant. A combined analysis of spatial maps from LVIS and AVIRIS showed increased water and chlorophyll stress in several high biomass stands in the study area. This study provides further evidence that lidar is better suited for biomass estimation, per se, while the best use of hyperspectral data may be to refine biomass predictions through a priori species stratification, while also providing information on canopy state, such as stress. Together, the two sensors have many potential applications in carbon dynamics, ecological and habitat studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号