首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many areas of forest across northern Canada are challenging to monitor on a regular basis as a result of their large extent and remoteness. Although no forest inventory data typically exist for these northern areas, detailed and timely forest information for these areas is required to support national and international reporting obligations. We developed and tested a sample-based approach that could be used to estimate forest stand height in these remote forests using panchromatic Very High Spatial Resolution (VHSR, < 1 m) optical imagery and light detection and ranging (lidar) data. Using a study area in central British Columbia, Canada, to test our approach, we compared four different methods for estimating stand height using stand-level and crown-level metrics generated from the VHSR imagery. ‘Lidar plots’ (voxel-based samples of lidar data) are used for calibration and validation of the VHSR-based stand height estimates, similar to the way that field plots are used to calibrate photogrammetric estimates of stand height in a conventional forest inventory or to make empirical attribute estimates from multispectral digital remotely sensed data. A k-nearest neighbours (k-NN) method provided the best estimate of mean stand height (R 2 = 0.69; RMSE = 2.3 m, RMSE normalized by the mean value of the estimates (RMSE-%) = 21) compared with linear regression, random forests, and regression tree methods. The approach presented herein demonstrates the potential of VHSR panchromatic imagery and lidar to provide robust and representative estimates of stand height in remote forest areas where conventional forest inventory approaches are either too costly or are not logistically feasible. While further evaluation of the methods is required to generalize these results over Canada to provide robust and representative estimation, VHSR and lidar data provide an opportunity for monitoring in areas for which there is no detailed forest inventory information available.  相似文献   

2.
High spatial resolution remotely sensed data has the potential to complement existing forest health programs for both strategic planning over large areas, as well as for detailed and precise identification of tree crowns subject to stress and infestation. The area impacted by the current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia, Canada, has increased 40-fold over the previous 5 years, with approximately 8.5 million ha of forest infested in 2005. As a result of the spatial extent and intensity of the outbreak, new technologies are being assessed to help detect, map, and monitor the damage caused by the beetle, and to inform mitigation of future beetle outbreaks. In this paper, we evaluate the capacity of high spatial resolution QuickBird multi-spectral imagery to detect mountain pine beetle red attack damage. ANOVA testing of individual spectral bands, as well as the Normalized Difference Vegetation Index (NDVI) and a ratio of red to green reflectance (Red-Green Index or RGI), indicated that the RGI was the most successful (p < 0.001) at separating non-attack crowns from red attack crowns. Based on this result, the RGI was subsequently used to develop a binary classification of red attack and non-attack pixels. The total number of QuickBird pixels classified as having red attack damage within a 50 m buffer of a known forest health survey point were compared to the number of red attack trees recorded at the time of the forest health survey. The relationship between the number of red attack pixels and observed red attack crowns was assessed using independent validation data and was found to be significant (r2 = 0.48, p < 0.001, standard error = 2.8 crowns). A comparison of the number of QuickBird pixels classified as red attack, and a broader scale index of mountain pine beetle red attack damage (Enhanced Wetness Difference Index, calculated from a time series of Landsat imagery), was significant (r2 = 0.61, p < 0.001, standard error = 1.3 crowns). These results suggest that high spatial resolution imagery, in particular QuickBird satellite imagery, has a valuable role to play in identifying tree crowns with red attack damage. This information could subsequently be used to augment existing detailed forest health surveys, calibrate synoptic estimates of red attack damage generated from overview surveys and/or coarse scale remotely sensed data, and facilitate the generation of value-added information products, such as estimates of timber volume impacts at the forest stand level.  相似文献   

3.
Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees. We conducted the tests at two sites in California: (1) 59 km2 of secondary and old-growth coast redwood (Sequoia sempervirens) forest (Garcia-Mailliard area) and (2) 58 km2 of old-growth Sierra Nevada forest (North Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against Lidar height metrics and against QuickBird-derived tree crown diameter generated equations of carbon density as a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of the same trees showed significant correlation (r = 0.82, P < 0.05). Comparison of stand-level Lidar height metrics with field-derived Lorey's mean height showed significant correlation (Garcia-Mailliard r = 0.94, P < 0.0001; North Yuba R = 0.89, P < 0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees, shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean ± standard error without Monte Carlo) as high as 320 ± 35 Mg ha− 1 (old-growth coast redwood) and 510 ± 120 Mg ha− 1 (red fir [Abies magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon in live trees, 70-97% of the total. Large sample sizes in the Monte Carlo analyses of remote sensing data generated low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved uncertainties of < 1%, providing estimates of aboveground live tree carbon density (mean ± 95% confidence interval with Monte Carlo) of 82 ± 0.7 Mg ha− 1 in Garcia-Mailliard and 140 ± 0.9 Mg ha− 1 in North Yuba. The method that we tested, combining field measurements, Lidar, and Monte Carlo, can produce robust wall-to-wall spatial data on forest carbon.  相似文献   

4.
According to the IPCC GPG (Intergovernmental Panel on Climate Change, Good Practice Guidance), remote sensing methods are especially suitable for independent verification of the national LULUCF (Land Use, Land-Use Change, and Forestry) carbon pool estimates, particularly the aboveground biomass. In the present study, we demonstrate the potential of standwise (forest stand is a homogenous forest unit with average size of 1-3 ha) forest inventory data, and ASTER and MODIS satellite data for estimating stand volume (m3 ha− 1) and aboveground biomass (t ha− 1) over a large area of boreal forests in southern Finland. The regression models, developed using standwise forest inventory data and standwise averages of moderate spatial resolution ASTER data (15 m × 15 m), were utilized to estimate stand volume for coarse resolution MODIS pixels (250 m × 250 m). The MODIS datasets for three 8-day periods produced slightly different predictions, but the averaged MODIS data produced the most accurate estimates. The inaccuracy in radiometric calibration between the datasets, the effect of gridding and compositing artifacts and phenological variability are the most probable reasons for this variability. Averaging of the several MODIS datasets seems to be one possibility to reduce bias. The estimates obtained were significantly close to the district-level mean values provided by the Finnish National Forest Inventory; the relative RMSE was 9.9%. The use of finer spatial resolution data is an essential step to integrate ground measurements with coarse spatial resolution data. Furthermore, the use of standwise forest inventory data reduces co-registration errors and helps in solving the scaling problem between the datasets. The approach employed here can be used for estimating the stand volume and biomass, and as required independent verification data.  相似文献   

5.
We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were recorded at 400 Hz over three intensive areas of 1 km2 where transects were spaced at 200 m, and along 64 transects spaced 1 km apart (total of ca. 2500 km2). LIDAR and field measurements of canopy height were similar in the three intensive study areas, with the 80th percentile of LIDAR returns explaining the greatest amount of variability (79%). Correlations between LIDAR data and aboveground tree biomass measured in the field were highly significant when all three 1 km2 areas were analyzed collectively, with the 80th percentile again explaining the greatest amount of variability (74%). However, when intensive areas were analyzed separately, correlations were poor for Oak/Pine and Pine/Scrub Oak stands. Similar results were obtained using FIA data; at the landscape scale, mean canopy height was positively correlated with aboveground tree biomass, but when forest types were analyzed separately, correlations were significant only for some wetland forests (Pitch Pine lowlands and mixed hardwoods; r2 = 0.74 and 0.59, respectively), and correlations were poor for upland forests (Oak/Pine, Pine/Oak and Pine/Scrub Oak, r2 = 0.33, 0.11 and 0.21, respectively). When LIDAR data were binned into 1-m height classes, more LIDAR pulses were recorded from the lowest height classes in stands with greater shrub biomass, and significant differences were detected between stands where recent prescribed fire treatments had been conducted and unburned areas. Our research indicates that single-beam LIDAR can be used for regional-scale (forest biomass) estimates, but that relationships between height and biomass can be poorer at finer scales within individual forest types. Binned data are useful for estimating the presence of ladder fuels (vertical continuity of leaves and branches) and horizontal fuel continuity below the canopy.  相似文献   

6.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

7.
A ground-based, upward-scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stem count density (stems/area), basal area, and above-ground woody biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest structural parameters retrieved using EVI data with extensive ground measurements, we found excellent agreement at the site level using five EVI scans (plots) per site (R2 = 0.94-0.99); very good agreement at the plot level for stem count density and biomass (R2 = 0.90-0.85); and good agreement at the plot level for mean DBH and basal area (R2 = 0.48-0.66). The observed variance at site and plot levels suggest that a sample area of at least 1 ha (104 m2) is required to estimate these parameters accurately at the stand level using either lidar-based or conventional methods. The algorithms and procedures used to retrieve these structural parameters are dependent on the unique ability of the Echidna® lidar to digitize the full waveform of the scattered lidar pulse as it returns to the instrument, which allows consistent separation of scattering by trunks and large branches from scattering by leaves. This successful application of ground-based lidar technology opens the door to rapid and accurate measurement of biomass and timber volume in areal sampling scenarios and as a calibration and validation tool for mapping biomass using airborne or spaceborne remotely sensed data.  相似文献   

8.
The current outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins) in British Columbia (BC), Canada, has led forest managers to consider thinning as a means of decreasing residual tree susceptibility to attack and subsequent mortality. Previous research indicates that susceptibility to mountain pine beetle is a function of a tree's physiological vigor and the intensity of attack. Trees able to produce ≥ 80 g (g) of wood per m2 of projected leaf area annually are highly resistant, because they are able to shift resource allocation locally from wood to resin production to isolate blue-stain fungi introduced by attacking beetles. Typically, the leaf area of susceptible stands must be reduced by two-thirds to permit most residual trees to increase their vigor to a safe level. We evaluate whether Landsat Thematic Mapper (TM) imagery (30 × 30 m) provides a means to assess the maximum leaf area index (LAI) of unthinned stands and the extent that thinning reduces LAI. The extent that residual trees in thinned stands may have increased their resistance to attack from mountain pine beetle is predicted from a non-linear relationship between % maximum LAI and mean tree vigor.We investigated the merits of this approach in the vicinity of Parson, British Columbia using four stands of lodgepole pine (Pinus contorta Dougl.), two of which were heavily thinned (stands were spaced to 4 and 5 m, approximately 70% reduction in stand density). An analysis of archived Landsat TM imagery indicated that prior to thinning in 1993, all four stands had full canopy, which, for mature stands, would translate to mean tree vigor between 40 and 70 g of annual wood production per m2 of foliage. By 1995, based on estimated changes in LAI derived from a second data of Landsat TM imagery, stand vigor in the unthinned stands had not changed; however, in the thinned stands, a nearly two third reduction in LAI resulted in a predicted increase in vigor to between 100 and 160 g wood m− 2 of leaf area. A subsequent assessment in 2001 indicated that stand vigor remained higher in the thinned stands relative to the control stands. Following an infestation of mountain pine beetle in the study area in 2002, mortality data indicated that the thinned stands experienced no mortality relative to the unthinned stands which experienced 5.5% mortality in the initial years of the attack. In the larger area surrounding the study site, a general relationship was found between predicted stand vigor and mountain pine beetle-induced mortality as estimated from aerial overview survey data (r2 = 0.43, p < 0.01).  相似文献   

9.
Forest succession is a fundamental ecological process which can impact the functioning of many terrestrial processes, such as water and nutrient cycling and carbon sequestration. Therefore, knowing the distribution of forest successional stages over a landscape facilitates a greater understanding of terrestrial ecosystems. One way of characterizing forest succession over the landscape is to use satellite imagery to map forest successional stages continuously over a region. In this study we use a forest succession model (ZELIG) and a canopy reflectance model (GORT) to produce spectral trajectories of forest succession from young to old-growth stages, and compared the simulated trajectories with those constructed from Landsat Thematic Mapper (TM) imagery to understand the potential of mapping forest successional stages with remote sensing. The simulated successional trajectories captured the major characteristics of observed regional mean succession trajectory with Landsat TM imagery for Tasseled Cap indices based on age information from the Pacific Northwest Forest Inventory and Analysis Integrated Database produced by Pacific Northwest Research Station, USDA Forest Service. Though the successional trajectories are highly nonlinear in the early years of succession, a linear model fits well the regional mean successional trajectories for brightness and greenness due to significant cross-site variations that masked the nonlinearity over a regional scale (R2 = 0.8951 for regional mean brightness with age; R2 = 0.9348 for regional mean greenness with age). Regression analysis found that Tasseled Cap brightness and greenness are much better predictors of forest successional stages than wetness index based on the data analyzed in this study. The spectral history based on multitemporal Landsat imagery can be used to effectively identify mature and old-growth stands whose ages do not match with remote sensing signals due to change occurred during the time between ground data collection and image acquisition. Multitemporal Landsat imagery also improves prediction of forest successional stages. However, a linear model on a stand basis has a limited predictive power of forest stand successional stages (adjusted R2 = 0.5435 using the Tasseled Cap indices from all four images used in this study) due to significant variations in remote sensing signals for stands at the same successional stage. Therefore, accurate prediction of forest successional stage using remote sensing imagery at stand scale requires accounting for site-specific factors influence remotely sensed signals in the future.  相似文献   

10.
The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast height and biomass. But information about tree crown sizes is difficult to obtain and rarely available from traditional forest inventory. The study objective was to test the hypothesis that a model previously developed for estimation of tree crown size can be generalized across sensors and sites. Our study sites include the Racoon Ecological Management Area in southeast Ohio, USA and the Duke Forest in North Carolina Piedmont, USA. We sampled a series of circular plots in the summers of 2005 and 2007. We derived average tree crown diameter (CD) for trees with diameter at breast height (DBH) greater than 6.4 cm (2.5 in) for each sampling plot. We developed statistical models using image spatial information from Ikonos and QuickBird images as the independent variable and CD for stands in Ohio as the dependent variable. The models provide an explanation of tree crown size for the hardwood stands comparable to other approaches (R2 = ∼ 0.5 and RMSE = 0.83 m). Moreover, the models that estimate tree crown size using the ratio of image variances at two spatial resolutions can be applied across sensors and sites, i.e. the statistical models developed with Ikonos images can be applied directly to estimate tree crown size with QuickBird image, and the statistical models developed in Ohio can be applied directly to estimate tree crown size with images in North Carolina. These results indicate that the model developed based on image variance ratio at two spatial resolutions can be used to take advantage of existing sampling plot data and images to estimate CD with more recent images, enhancing the efficiency of forest resources inventory and monitoring.  相似文献   

11.
Airborne laser scanner systems provide detailed forest information that can be used for important improvements in forest management decisions. Planning systems under development use plot-survey data to represent forest stands in large forest holdings which enables new flexible methods to model the forest and optimize selection of silvicultural treatments. In Sweden today, only averages of forest stand variables are used, and the survey methods used do not provide plot-survey data for all stands in large forest holdings. This is a task possibly solved using airborne laser scanner data. Various measures can be derived from laser data, each describing different forest variables, such as tree height distribution, vegetation density and vertical tree crown structure. Here, imputation of field plot (10 m radius) data using measures derived from airborne laser scanner data (TopEye) and optical image data (SPOT 5 HRG satellite sensor) were evaluated as a method to provide data for new long-term management planning systems. In addition to commonly applied measures, the semivariogram of laser measurements was evaluated as a new measure to extract spatial characteristics of the forest. The study used data from 870, 10 m radius field plots (0 to 812 m3 ha− 1) surveyed for a 1200 ha large forest estate in the south of Sweden. At the best, combining measures derived from laser scanner data and SPOT 5 data, stand mean volume was estimated with a root mean square error (RMSE) of 20% of the sample mean and stem density with 22% RMSE. Bias of stem density estimates was 5%, and stand stem volume 4%. Although these accuracies are sufficient for operational application, estimates of tree species proportions and within-stand variation were clearly not.  相似文献   

12.
This article compares the performance of three algorithms representative of published methods for tree crown detection and delineation from high spatial resolution imagery, and demonstrates a standardized accuracy assessment framework. The algorithms – watershed segmentation, region growing and valley-following – were tested on softwood and hardwood sites using Emerge natural colour vertical aerial imagery with 60 cm ground sampled distance and QuickBird panchromatic imagery with an 11? look angle. The evaluation considered both plot-level and individual tree crown detection and delineation results. The study shows that while all three methods reasonably delineate crowns in the softwood stand on the Emerge image, region growing provided the highest accuracies, with producer's and user's accuracy for tree detection reaching 70% and root mean square error for crown diameter estimation of 15%. Crown detection accuracies were lower on the QuickBird image. No algorithm proved accurate for the hardwood stand on either image set (both producer's and user's accuracies < 30%).  相似文献   

13.
The potential of canopy reflectance modelling to retrieve simultaneously several structural variables in managed Norway spruce stands was investigated using the “Invertible Forest Reflectance Model”, INFORM. INFORM is an innovative extension of the FLIM model, with crown transparency, infinite crown reflectance and understory reflectance simulated using physically based sub-models (SAILH, LIBERTY and PROSPECT). The INFORM model was inverted with hyperspectral airborne HyMap data using a neural network approach. INFORM based estimates of forest structural variables were produced using site-specific ranges of stand structural variables. A relatively simple three layer feed-forward backpropagation neural network with two input neurons, one neuron in the hidden layer and three output neurons was employed to map leaf area index (LAI), crown coverage and stem density.To identify the optimum 2-band spectral subset to be used in the inversion process, all 2-band combinations of the HyMap dataset were systematically evaluated for model inversion. Field measurements of structural variables from 39 forest stands were used to validate the maps produced from HyMap imagery. Using two HyMap wavebands at 837 nm and 1148 nm the obtained accuracy of the LAI map amounts to an rmse of 0.58 (relative rmse = 18% of mean, R2 = 0.73). With HyMap data resampled to Landsat TM spectral bands and using two “optimum” bands at 840 nm and 1650 nm, rmse was 0.66 and relative rmse 21%. In contrast to approaches based on empirical relations between spectral vegetation indices and structural variables, the main advantage of the inversion approach is that it does not require previous calibration.  相似文献   

14.
The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m3/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests.  相似文献   

15.
Using the panchromatic band of QuickBird high-spatial-resolution satellite images as a data source, we estimated the mean crown diameters of different stands and of stands with different canopy densities by applying the semivariogram methodology used in geostatistics. The results indicated that relatively accurate estimates of the mean crown diameters of stands with a relatively high canopy density could be obtained. The estimated errors increased proportionally with decreasing canopy density. The whole-stand-image (matrix) method we used provided fairly accurate estimates of stand structural parameters, but would not readily permit the evaluation of patterns in stand structure. The transect method exhibited periodicity as a function of distance and, although it permits the detection of directional patterns, it does not depict stand structural parameters as accurately as the matrix method. Our results suggest that this approach could provide a new reference method for solving the problem of automated estimation of mean crown diameter at the stand level.  相似文献   

16.
We present a novel approach to generating regional scale aboveground biomass estimates for tree species of the Lake Tahoe Basin using hyperspatial (< 1 m2 ground resolution) remote sensing imagery. Tree crown shadows were identified and delineated as individual polygons. The area of shadowed vegetation for each tree was related to two tree structural parameters, diameter-at-breast height (DBH) and crown area. We found we could detect DBH and crown area with reasonable accuracy (field measured to image derived cross correlation results were 0.67 and 0.77 for DBH and crown area, respectively). Furthermore, the counts of the delineated polygons in a region generated overstory stem densities validated to manually photointerpreted stem densities (photointerpreted vs. image-derived stem densities correlation was 0.87). We demonstrate with accurate classification maps and allometric equations relating DBH or crown area to biomass, that these crown-level parameters can be used to generate regional scale biomass estimates without the signal saturation common to coarse-scale optical and RADAR sensors.  相似文献   

17.
The use of airborne laser scanning systems (lidar) to describe forest structure has increased dramatically since height profiling experiments nearly 30 years ago. The analyses in most studies employ a suite of frequency-based metrics calculated from the lidar height data, which are systematically eliminated from a full model using stepwise multiple linear regression. The resulting models often include highly correlated predictors with little physical justification for model formulation. We propose a method to aggregate discrete lidar height and intensity measurements into larger footprints to create “pseudo-waves”. Specifically, the returns are first sorted into height bins, sliced into narrow discrete elements, and finally smoothed using a spline function. The resulting “pseudo-waves” have many of the same characteristics of traditional waveform lidar data. We compared our method to a traditional frequency-based method to estimate tree height, canopy structure, stem density, and stand biomass in coniferous and deciduous stands in northern Wisconsin (USA). We found that the pseudo-wave approach had strong correlations for nearly all tree measurements including height (cross validated adjusted R2 (R2cv) = 0.82, RMSEcv = 2.09 m), mean stem diameter (R2cv = 0.64, RMSEcv = 6.15 cm), total aboveground biomass (R2cv = 0.74, RMSEcv = 74.03 kg ha− 1), and canopy coverage (R2cv = 0.79, RMSEcv = 5%). Moreover, the type of wave (derived from height and intensity or from height alone) had little effect on model formulation and fit. When wave-based and frequency-based models were compared, fit and mean square error were comparable, leading us to conclude that the pseudo-wave approach is a viable alternative because it has 1) an increased breadth of available metrics; 2) the potential to establish new meaningful metrics that capture unique patterns within the waves; 3) the ability to explain metric selection based on the physical structure of forests; and 4) lower correlation among independent variables.  相似文献   

18.
Airborne scanning LiDAR systems are used to predict a range of forest attributes. However, the accuracy with which this can be achieved is highly dependent on the sensor configuration and the structural characteristics of the forest examined. As a result, there is a need to understand laser light interactions with forest canopies so that LiDAR sensor configurations can be optimised to assess particular forest types. Such optimisation will not only ensure the targeted forest attributes can be accurately and consistently quantified, but may also minimise the cost of data acquisition and indicate when a survey configuration will not deliver information needs.In this paper, we detail the development and application of a model to simulate laser interactions within forested environments. The developed model, known as the LiDAR Interception and Tree Environment (LITE) model, utilises a range of structural configurations to simulate trees with variable heights, crown dimensions and foliage clumping. We developed and validated the LITE model using field data obtained from three forested sites covering a range of structural classes. Model simulations were then compared to coincident airborne LiDAR data collected over the same sites. Results indicate that the LITE model can be used to produce comparable estimates of maximum height of trees within plots (differences < 2.42 m), mean heights of first return data (differences < 2.27 m), and canopy height percentiles (r2 = 0.94, p < 0.001) when compared to airborne LiDAR data. In addition, the distribution of airborne LiDAR hits through the canopy profile was closely matched by model predictions across the range of sites. Importantly, this demonstrates that the structural differences between forest stands can be characterised by LITE. Models that are capable of interpreting the response of small-footprint LiDAR waveforms can facilitate algorithm development, the generation of corrections for actual LiDAR data, and the optimisation of sensor configurations for differing forest types, benefiting a range of experimental and commercial LiDAR applications. As a result, we also performed a scenario analysis to demonstrate how differences in forest structure, terrain, and sensor configuration can influence the interception of LiDAR beams.  相似文献   

19.
Remote sensing based biomass estimates in Arctic areas are usually produced using coarse spatial resolution satellite imagery, which is incapable of capturing the fragmented nature of tundra vegetation communities. We mapped aboveground biomass using field sampling and very high spatial resolution (VHSR) satellite images (QuickBird, WorldView-2 and WorldView-3) in four different Arctic tundra or peatland sites with low vegetation located in Russia, Canada, and Finland. We compared site-specific and cross-site empirical regressions. First, we classified species into plant functional types and estimated biomass using easy, non-destructive field measurements (cover, height). Second, we used the cover/height-based biomass as the response variable and used combinations of single bands and vegetation indices in predicting total biomass. We found that plant functional type biomass could be predicted reasonably well in most cases using cover and height as the explanatory variables (adjusted R2 0.21–0.92), and there was considerable variation in the model fit when the total biomass was predicted with satellite spectra (adjusted R2 0.33–0.75). There were dissimilarities between cross-site and site-specific regression estimates in satellite spectra based regressions suggesting that the same regression should be used only in areas with similar kinds of vegetation. We discuss the considerable variation in biomass and plant functional type composition within and between different Arctic landscapes and how well this variation can be reproduced using VHSR satellite images. Overall, the usage of VHSR images creates new possibilities but to utilize them to full potential requires similarly more detailed in-situ data related to biomass inventories and other ecosystem change studies and modelling.  相似文献   

20.
Vegetation structure retrieval accuracies from spaceborne Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) data are affected by surface topography, background noise and sensor saturation. This study uses a physical approach to remove surface topography effect from lidar returns to retrieve vegetation height from ICESat/GLAS data over slope terrains. Slope-corrected vegetation heights from ICESat/GLAS data were compared to airborne Laser Vegetation Imaging Sensor (LVIS) (20 m footprint size) and small-footprint lidar data collected in White Mountain National Forest, NH. Impact of slope on LVIS vegetation height estimates was assessed by comparing LVIS height before and after slope correction with small-footprint discrete-return lidar and field data.Slope-corrected GLAS vegetation heights match well with 98 percentile heights from small-footprint lidar (R2 = 0.77, RMSE = 2.2 m) and top three LVIS mean (slope-corrected) heights (R2 = 0.64, RMSE = 3.7 m). Impact of slope on LVIS heights is small, however, comparison of LVIS heights (without slope correction) with either small footprint lidar or field data indicates that our scheme improves the overall LVIS height accuracy by 0.4-0.7 m in this region. Vegetation height can be overestimated by 3 m over a 15° slope without slope correction. More importantly, both slope-corrected GLAS and LVIS height differences are independent of slope. Our results demonstrate the effectiveness of the physical approach to remove surface topography from large footprint lidar data to improve accuracy of maximum vegetation height estimates.GLAS waveforms were compared to aggregated LVIS waveforms in Bartlett Experimental Forest, NH, to evaluate the impact of background noise and sensor saturation on vegetation structure retrievals from ICESat/GLAS. We found that GLAS waveforms with sensor saturation and low background noise match well with aggregated LVIS waveforms, indicating these waveforms capture vertical vegetation structure well. However, waveforms with large noise often lead to mismatched waveforms with LVIS and underestimation of waveform extent and vegetation height. These results demonstrate the quality of ICESat/GLAS vegetation structure estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号