首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sundarbans is the world's largest remaining single block of mangrove forest, covering approximately 1 million ha (~ 10,000 km2) of the Ganges-Brahmaputra delta along the coastal areas of India and Bangladesh. Sea level rise and alteration of water flows of the Himalayan headwaters are among the major disturbances threatening these coastal areas. But very few studies exist on the dynamics or current status of the Sundarbans coastline. We used Landsat images spanning from 1973 to 2010, and an algorithm that we developed, to consistently estimate the spatiotemporal dynamics of erosion and accretion for four different time intervals and the whole study period. Our results show that the direction and extent of erosion and accretion rates varied throughout the different periods. Erosion was the highest in the 1973-1979 interval, with 23.2 km2 year−1 of land loss. However, that rate substantially declined in the following periods, reaching a rate of 7-10 km2 year−1. Accretion showed a rate of 10 km2 year−1 between 1973 and 1989, but substantially declined to ~ 4 km2 year−1 between 1989 and 2010. Accretion rate has declined in the recent years but erosion rate has remained relatively high. As a result the delta front has undergone a net erosion of ~ 170 km2 of coastal land in the 37 years of our study period. These numbers are significantly higher than the previously reported rates and magnitudes of erosion in this area. The methods and maps developed in this study may be helpful in management planning of this vulnerable coastline.  相似文献   

2.
Estimating Siberian timber volume using MODIS and ICESat/GLAS   总被引:4,自引:0,他引:4  
Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500 m land cover classification of a 10° latitude by 12° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types × four canopy density classes, across this 811,414 km2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ≤ 10° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 ± 11.8 m3/ha across all 16 forest classes based on GLAS pulses on slopes ≤ 10° and 171.9 ± 12.4 m3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146 m3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ≤ 10° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 × 109 m3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 × 109 m3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.  相似文献   

3.
The predictability of the vegetation cycle is analyzed as a function of the spatial scale over West Africa during the period 1982-2004. The NDVI-AVHRR satellite data time series are spatially aggregated over windows covering a range of sizes from 8 × 8 km2 to 1024 × 1024 km2. The times series are then embedded in a low-dimensional pseudo-phase space using a system of time delayed coordinates. The correlation dimension (Dc) and entropy of the underlying vegetation dynamics, as well as the noise level (σ) are extracted from a nonlinear analysis of the time series. The horizon of predictability (HP) of the vegetation cycle defined as the time interval required for an n% RMS error on the vegetation state to double (i.e. reach 2n% RMS) is estimated from the entropy production. Compared to full resolution, the intermediate scales of aggregation (in the range of 64 × 64 km2 to 256 × 256 km2) provide times series with a slightly improved signal to noise ratio, longer horizon of predictability (about 2 to 5 decades) and preserve the most salient spatial patterns of the vegetation cycle. Insights on the best aggregation scale and on the expected vegetation cycle predictability over West Africa are provided by a set of maps of the correlation dimension (Dc), the horizon of predictability (HP) and the level of noise (σ).  相似文献   

4.
The floodplain forests bordering the Amazon River have outstanding ecological, economic, and social importance for the region. However, the original distribution of these forests is not well known, since they have suffered severe degradation since the 16th century. The previously published vegetation map of the Amazon River floodplain (Hess et al., 2003), based on data acquired in 1996, shows enormous difference in vegetation cover classes between the regions upstream and downstream of the city of Manaus. The upper floodplain is mostly covered by forests, while the lower floodplain is predominantly occupied by grasses and shrubs.This study assesses deforestation in the Lower Amazon floodplain over a ~ 30 year period by producing and comparing a historical vegetation map based on MSS/Landsat images acquired in the late 1970s with a recent vegetation map produced from TM/Landsat images obtained in 2008. The maps were generated through the following steps: 1) normalization and mosaicking of images for each decade; 2) application of a linear mixing model transformation to produce vegetation, soil and shade fraction-images; and 3) object-oriented image analysis and classification. For both maps, the following classes were mapped: floodplain forest, non-forest floodplain vegetation, bare soil and open water. The two maps were combined using object-level Boolean operations to identify time transitions among the mapped classes, resulting in a map of the land cover change occurred over ~ 30 years. Ground information collected at 168 ground points was used to build confusion matrices and calculate Kappa indices of agreement. A survey strategy combining field observations and interviews allowed the collection of information about both recent and historical land cover for validation purposes. Kappa values (0.77, 0.75 and 0.75) indicated the good quality of the maps, and the error estimates were used to adjust the estimated deforested area to a value of 3457 km2 ± 1062 km2 (95% CI) of floodplain deforestation over the ~ 30 years.  相似文献   

5.
Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 °N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10°, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.  相似文献   

6.
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote-sensing methods have the spatial and temporal resolution required to map hazard increases. Here, a dynamic physically-based slope stability model that requires soil moisture is applied using remote-sensing products from multiple Earth observing platforms. The resulting landslide susceptibility maps using the advanced microwave scanning radiometer (AMSR-E) surface soil moisture are compared to those created using variable infiltration capacity (VIC-3L) modeled soil moisture at Cleveland Corral landslide area in California, US. Despite snow cover influences on AMSR-E surface soil moisture estimates, a good relationship between the downscaled AMSR-E's surface soil moisture and the VIC-3L modeled soil moisture is evident. The AMSR-E soil moisture mean (0.17 cm3/cm3) and standard deviation (0.02 cm3/cm3) are very close to the mean (0.21 cm3/cm3) and standard deviation (0.09 cm3/cm3) estimated by VIC-3L model. Qualitative results show that the location and extent of landslide prone regions are quite similar. Under the maximum saturation scenario, 0.42% and 0.49% of the study area were highly susceptible using AMSR-E and VIC-3L model soil moisture, respectively.  相似文献   

7.
Improvements to a MODIS global terrestrial evapotranspiration algorithm   总被引:43,自引:0,他引:43  
MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519-536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10-30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.  相似文献   

8.
Vegetation structure retrieval accuracies from spaceborne Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) data are affected by surface topography, background noise and sensor saturation. This study uses a physical approach to remove surface topography effect from lidar returns to retrieve vegetation height from ICESat/GLAS data over slope terrains. Slope-corrected vegetation heights from ICESat/GLAS data were compared to airborne Laser Vegetation Imaging Sensor (LVIS) (20 m footprint size) and small-footprint lidar data collected in White Mountain National Forest, NH. Impact of slope on LVIS vegetation height estimates was assessed by comparing LVIS height before and after slope correction with small-footprint discrete-return lidar and field data.Slope-corrected GLAS vegetation heights match well with 98 percentile heights from small-footprint lidar (R2 = 0.77, RMSE = 2.2 m) and top three LVIS mean (slope-corrected) heights (R2 = 0.64, RMSE = 3.7 m). Impact of slope on LVIS heights is small, however, comparison of LVIS heights (without slope correction) with either small footprint lidar or field data indicates that our scheme improves the overall LVIS height accuracy by 0.4-0.7 m in this region. Vegetation height can be overestimated by 3 m over a 15° slope without slope correction. More importantly, both slope-corrected GLAS and LVIS height differences are independent of slope. Our results demonstrate the effectiveness of the physical approach to remove surface topography from large footprint lidar data to improve accuracy of maximum vegetation height estimates.GLAS waveforms were compared to aggregated LVIS waveforms in Bartlett Experimental Forest, NH, to evaluate the impact of background noise and sensor saturation on vegetation structure retrievals from ICESat/GLAS. We found that GLAS waveforms with sensor saturation and low background noise match well with aggregated LVIS waveforms, indicating these waveforms capture vertical vegetation structure well. However, waveforms with large noise often lead to mismatched waveforms with LVIS and underestimation of waveform extent and vegetation height. These results demonstrate the quality of ICESat/GLAS vegetation structure estimates.  相似文献   

9.
This paper reports the development of a decision tree algorithm to classify the surface soil freeze/thaw states. The algorithm uses SSM/I brightness temperatures recorded in the early morning. Three critical indices are used as classification criteria—the scattering index (SI), the 37 GHz vertical polarization brightness temperature (T37V), and the 19 GHz polarization difference (PD19). The thresholds of these criteria were obtained from samples of frozen soil, thawed soil, desert, and snow. The algorithm is capable of distinguishing between frozen soil, thawed soil, desert, and precipitation. In-situ 4-cm deep soil temperatures on the Qinghai-Tibetan Plateau were used to validate the classification results, and the average classification accuracy was found to be 87%. Regarding the misclassified pixels, about 40% and 73% of them appeared when the surface soil temperature ranged from − 0.5 °C to 0.5 °C and from − 2.0 °C to 2.0 °C, respectively, which means that most misclassifications occurred near the soil freezing point. In addition, misclassifications mainly occurred from April to May and September to October, the transition periods between warm and cold seasons. A grid-to-grid Kappa analysis was also conducted to evaluate the consistency between the map of the actual number of frozen days obtained using the decision tree classification algorithm and the reference map of geocryological regionalization and classification in China. The overall classification accuracy was 91.7%, and the Kappa index was 80.5%. The boundary between the frozen and thawed soil was consistent with the southern limit of seasonally frozen ground from the reference map. The statistics show that the maximum area of frozen soil is about 6.82 × 106 km2 in late January, accounting for 69% of total Chinese land area.  相似文献   

10.
Linking intertidal processes to their natural patterns within a framework of coastal erosion requires monitoring techniques providing high-resolution spatio-temporal data from the scale of processes to this of patterns. The Scanning Hydrographic Operational Airborne LiDAR Survey (SHOALS) consists of a ubiquitous topographic and bathymetric LiDAR (Light Detection And Ranging) system that has become an important technology for generating high-resolution Digital Terrain Models (DTM) and Digital Surface Models (DSM) over intertidal landscapes. The objectives of this project are i) to highlight the capacity of SHOALS Topography and intensity data (Red and Near-InfraRed) to detect intertidal vegetation, ii) to assess the salt-marsh zonation, and iii) to map intertidal habitats and its adjacent coastal areas (Gulf of St. Lawrence, Canada). The study area was selected based on the spectrum of land cover types, encompassing beach, salt-marsh, arable farm and urban coastal environments. Surfaces constructed from the LiDAR survey included DSM, DTM, Normalized Surface Model (NSM), Digital Intensity Model for InfraRed (DIMI), Digital Intensity Model for Red (DIMR), and Normalized Difference LiDAR Vegetation Index Model (NDLVIM), derived from the two previous models. The correlation between the so-called NDLVI and the amount of salt-marsh vegetation, measured in situ, was 0.87 (p < 0.01). Then, LiDAR-assessed salt-marsh ecological zonation allowed finding out intermediate and strong relationships between NDLVI and Topography (r2 = 0.89, p < 0.038) and Topographic heterogeneity (r2 = 0.54, p < 0.1394), respectively. Finally, NDLVI and Topography surfaces were classified using maximum likelihood algorithm into 17 classes, whose overall accuracy and kappa coefficient were 91.89% and 0.9088, respectively. These results support that (1) intertidal vegetation can be discriminated by NDLVI, (2) salt-marsh ecological zonation pattern, and (3) accurate coastal land cover maps can be satisfactorily generated from a single LiDAR survey using the NDLVIM and DTM approach.  相似文献   

11.
In this paper, we explored fusion of structural metrics from the Laser Vegetation Imaging Sensor (LVIS) and spectral characteristics from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) for biomass estimation in the Sierra Nevada. In addition, we combined the two sensors to map species-specific biomass and stress at landscape scale. Multiple endmember spectral mixture analysis (MESMA) was used to classify vegetation from AVIRIS images and obtain sub-pixel fractions of green vegetation, non-photosynthetic vegetation, soil, and shade. LVIS metrics, AVIRIS spectral indices, and MESMA fractions were compared with field measures of biomass using linear and stepwise regressions at stand (1 ha) level. AVIRIS metrics such as water band indices and shade fractions showed strong correlation with LVIS canopy height (r2 = 0.69, RMSE = 5.2 m) and explained around 60% variability in biomass. LVIS variables were found to be consistently good predictors of total and species specific biomass (r2 = 0.77, RMSE = 70.12 Mg/ha). Prediction by LVIS after species stratification of field data reduced errors by 12% (r2 = 0.84, RMSE = 58.78 Mg/ha) over using LVIS metrics alone. Species-specific biomass maps and associated errors created from fusion were different from those produced without fusion, particularly for hardwoods and pines, although mean biomass differences between the two techniques were not statistically significant. A combined analysis of spatial maps from LVIS and AVIRIS showed increased water and chlorophyll stress in several high biomass stands in the study area. This study provides further evidence that lidar is better suited for biomass estimation, per se, while the best use of hyperspectral data may be to refine biomass predictions through a priori species stratification, while also providing information on canopy state, such as stress. Together, the two sensors have many potential applications in carbon dynamics, ecological and habitat studies.  相似文献   

12.
This paper discusses the effects of vegetation on C- (4.75 GHz) and L- (1.6 GHz) band backscattering (σo) measured throughout a growth cycle at incidence angles of 15, 35 and 55°. The utilized σo data set was collected by a truck mounted scatterometer over a corn field and is supported by a comprehensive set of ground measurements, including soil moisture and vegetation biomass. Comparison of σo measurement against simulations by the Integral Equation Method (IEM) surface scattering model (Fung et al., 1992) shows that the σo measurements are dominated either by an attenuated soil return or by scattering from vegetation depending on the antenna configuration and growth stage. Further, the measured σo is found to be sensitive to soil moisture even at peak biomass and large incidence angles, which is attributed to scattering along the soil-vegetation pathway.For the simulation of C-band σo and the retrieval of soil moisture two methods have been applied, which are the semi-empirical water cloud model (Attema & Ulaby, 1978) and a novel method. This alternative method uses the empirical relationships between the vegetation water content (W) and the ratio of the bare soil and the measured σo to correct for vegetation. It is found that this alternative method is superior in reproducing the measured σo as well as retrieving soil moisture. The highest retrieval accuracies are obtained at a 35° incidence angle leading to RMSD's of 0.044 and 0.037 m3 m− 3 for the HH and VV-polarization, respectively. In addition, the sensitivity of these soil moisture retrievals to W and surface roughness parameter uncertainties is investigated.  相似文献   

13.
Uncertainties in burning efficiency (BE) estimates can lead to large errors in fire emission quantification (from 23% to 46%). One of the main causes of these errors is the spatial variability of fuel consumption within burned areas. This paper studies whether burn severity (BS) maps can be used to improve BE assessment. A burn severity map of two large fires in California was obtained by inverting a simulation model constrained by post-fire observations from Landsat TM imagery. Model output values of BS were validated against field measurements, obtaining a high correlation (R2 = 0.85) and low errors (Root Mean Square Error, RMSE = 0.14) throughout a wide range of BS levels. The BS map obtained was then used to adjust BE reference values per vegetation type found in the area before the fire. The adjusted burning efficiency (BEadj) was compared to the burned biomass, which was estimated by subtracting vegetation indices from pre- and post-fire images. Results showed a high correlation for conifers (R2 = 0.75) and hardwoods (R2 = 0.73), and a moderate correlation (R2 ∼ 0.5) for shrubs and grasslands. In general, for all vegetation types BEadj performed better (R2 = 0.4-0.75) than literature-based BE (R2 < 0.0001). This study demonstrates: (i) the consistency of the simulation model inversion for BS estimation in temperate ecosystems, and (ii) the improvement of BE estimation when the spatial variability of the combustion was quantified in terms of BS.  相似文献   

14.
A method to generate high spatio-temporal resolution maps of landfast sea ice from cloud-free MODIS composite imagery is presented. Visible (summertime) and thermal infrared (wintertime) cloud-free 20-day MODIS composite images are used as the basis for these maps, augmented by AMSR-E ASI sea-ice concentration composite images (when MODIS composite image quality is insufficient). The success of this technique is dependent upon efficient cloud removal during the compositing process. Example wintertime maximum (~ 374,000 km2) and summertime minimum (~ 112,000 km2) fast-ice maps for the entire East Antarctic coast are presented. The summertime minimum map provides the first high-resolution indication of multi-year fast-ice extent, which may be used to help assess changes in Antarctic sea-ice volume. The 2σ errors in fast-ice extent are estimated to be ± 2.98% when ≥ 90% of the fast-ice pixels in a 20-day period are classified using the MODIS composite, or ± 8.76 otherwise (when augmenting AMSR-E or the previous/next MODIS composite image is used to classify > 10% of the fast ice). Imperfect composite image quality, caused by persistent cloud, inaccurate cloud masking or a highly dynamic fast-ice edge, was the biggest impediment to automating the fast-ice detection procedure.  相似文献   

15.
Herbaceous aquatic macrophytes cover extensive areas on the floodplains of the Amazon basin and are an important habitat and input of organic carbon. These communities have large intra- and inter-annual variability, and characterization of this variability is necessary to quantify the role of macrophytes in the ecology and biogeochemistry of the floodplain. A novel approach for mapping the temporal evolution of aquatic vegetation in the Amazon floodplain, which could be adapted to other spatially and temporally changing environments, is presented. Macrophyte cover varied seasonally and inter-annually, ranging between 104 and 198 km2 for the floodplain examined (total area, 984 km2). The observed evolution of plant distribution indicated a spatial and temporal partition of macrophyte communities into short-lived and annual groups. A simulation of macrophyte net primary production (NPP) based on the mapping results indicated that at least 3% of NPP could be attributed to the short-lived communities. The present results suggest that significant changes in the macrophyte's contribution to carbon cycling in the Amazon floodplain could occur as a result of the predicted increase in frequency of drought years for the Amazon system due to climate change.  相似文献   

16.
An experimental site was set up in a large, flat and homogeneous area of rice crops for the validation of satellite derived land surface temperature (LST). Experimental campaigns were held in the summers of 2002-2004, when rice crops show full vegetation cover. LSTs were measured radiometrically along transects covering an area of 1 km2. A total number of four thermal radiometers were used, which were calibrated and inter-compared through the campaigns. Radiometric temperatures were corrected for emissivity effects using field emissivity and downwelling sky radiance measurements. A database of ground-based LSTs corresponding to morning, cloud-free overpasses of Envisat/Advanced Along-Track Scanning Radiometer (AATSR) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. Ground LSTs ranged from 25 to 32 °C, with uncertainties between ± 0.5 and ± 0.9 °C. The largest part of these uncertainties was due to the spatial variability of surface temperature. The database was used for the validation of LSTs derived from the operational AATSR and MODIS split-window algorithms, which are currently used to generate the LST product in the L2 level data. A quadratic, emissivity dependent split-window equation applicable to both AATSR and MODIS data was checked as well. Although the number of cases analyzed is limited (five concurrences for AATSR and eleven for MODIS), it can be concluded that the split-window algorithms work well, provided that the characteristics of the area are adequately prescribed, either through the classification of the land cover type and the vegetation cover, or with the surface emissivity. In this case, the AATSR LSTs yielded an average error or bias of − 0.9 °C (ground minus algorithm), with a standard deviation of 0.9 °C. The MODIS LST product agreed well with the ground LSTs, with differences comparable or smaller than the uncertainties of the ground measurements for most of the days (bias of + 0.1 °C and standard deviation of 0.6 °C, for cloud-free cases and viewing angles smaller than 60°). The quadratic split-window algorithm resulted in small average errors (+ 0.3 °C for AATSR and 0.0 °C for MODIS), with differences not exceeding ± 1.0 °C for most of the days (standard deviation of 0.9 °C for AATSR and 0.5 °C for MODIS).  相似文献   

17.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

18.
There has been growing concern about land use/land cover change in tropical regions, as there is evidence of its influence on the observed increase in atmospheric carbon dioxide concentration and consequent climatic changes. Mapping of deforestation by the Brazil's National Space Research Institute (INPE) in areas of primary tropical forest using satellite data indicates a value of 587,727 km2 up to the year 2000. Although most of the efforts have been concentrated in mapping primary tropical forest deforestation, there is also evidence of large-scale deforestation in the cerrado savanna, the second most important biome in the region.The main purpose of this work was to assess the extent of agriculture/pasture and secondary succession forest in the Brazilian Legal Amazon (BLA) in 2000, using a set of multitemporal images from the 1-km SPOT-4 VEGETATION (VGT) sensor. Additionally, we discriminated primary tropical forest, cerrado savanna, and natural/artificial waterbodies. Four classification algorithms were tested: quadratic discriminant analysis (QDA), simple classification trees (SCT), probability-bagging classification trees (PBCT), and k-nearest neighbors (K-NN). The agriculture/pasture class is a surrogate for those areas cleared of its original vegetation cover in the past, acting as a source of carbon. On the contrary, the secondary succession forest class behaves as a sink of carbon.We used a time series of 12 monthly composite images of the year 2000, derived from the SPOT-4 VGT sensor. A set of 19 Landsat scenes was used to select training and testing data. A 10-fold cross validation procedure rated PBCT as the best classification algorithm, with an overall sample accuracy of 0.92. High omission and commission errors occurred in the secondary succession forest class, due to confusion with agriculture/pasture and primary tropical forest classes. However, the PBCT algorithm generated the lower misclassification error in this class. Besides, this algorithm yields information about class membership probability, with ∼80% of the pixels with class membership probability greater or equal than 0.8. The estimated total area of agriculture/pasture and secondary succession forest in 2000 in the BLA was 966 × 103 and 140 × 103 km2, respectively. Comparison with an existing land cover map indicates that agriculture/pasture occurred primarily in areas previously occupied by primary tropical forest (46%) and cerrado savanna (33%), and also in transition forest (19%), and other vegetation types (2%). This further confirms the existing evidence of extensive cerrado savanna conversion.This study also concludes that SPOT-4 VGT data are adequate for discriminating several major land cover types in tropical regions. Agriculture/pasture was mapped with errors of about 5%. Very high classification errors were associated with secondary succession forest, suggesting that a different methodology/sensor has to be used to address this difficult land cover class (namely with the inclusion of ancillary data). For the other classes, we consider that accurate maps can be derived from SPOT-4 VGT data with errors lower than 20% for the cerrado savanna, and errors lower than 10% for the other land cover classes. These estimates may be useful to evaluate impacts of land use/land cover change on the carbon and water cycles, biotic diversity, and soil degradation.  相似文献   

19.
The Congo Basin is the world's third largest in size (~ 3.7 million km2), and second only to the Amazon River in discharge (~ 40,200 m3 s− 1 annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3° × 3° regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.  相似文献   

20.
Satellite L-band synthetic aperture radar backscatter data from 1996 and 2007 (from JERS-1 and ALOS PALSAR respectively), were used with field data collected in 2007 and a back-calibration method to produce biomass maps of a 15 000 km2 forest-savanna ecotone region of central Cameroon. The relationship between the radar backscatter and aboveground biomass (AGB) was strong (r2 = 0.86 for ALOS HV to biomass plots, r2 = 0.95 relating ALOS-derived biomass for 40 suspected unchanged regions to JERS-1 HH). The root mean square error (RMSE) associated with AGB estimation varied from ~ 25% for AGB < 100 Mg ha− 1 to ~ 40% for AGB > 100 Mg ha− 1 for the ALOS HV data. Change detection showed a significant loss of AGB over high biomass forests, due to suspected deforestation and degradation, and significant biomass gains along the forest-savanna boundary, particularly in areas of low population density. Analysis of the errors involved showed that radar data can detect changes in broad AGB class in forest-savanna transition areas with an accuracy > 95%. However, quantitative assessment of changes in AGB in Mg ha− 1 at a pixel level will require radar images from sensors with similar characteristics collecting data from the same season over multiple years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号