首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution digital canopy models derived from airborne lidar data have the ability to provide detailed information on the vertical structure of forests. However, compared to satellite data of similar spatial resolution and extent, the small footprint airborne lidar data required to produce such models remain expensive. In an effort to reduce these costs, the primary objective of this paper is to develop an airborne lidar sampling strategy to model full-scene forest canopy height from optical imagery, lidar transects and Geographic Object-Based Image Analysis (GEOBIA). To achieve this goal, this research focuses on (i) determining appropriate lidar transect features (i.e., location, direction and extent) from an optical scene, (ii) developing a mechanism to model forest canopy height for the full-scene based on a minimum number of lidar transects, and (iii) defining an optimal mean object size (MOS) to accurately model the canopy composition and height distribution. Results show that (i) the transect locations derived from our optimal lidar transect selection algorithm accurately capture the canopy height variability of the entire study area; (ii) our canopy height estimation models have similar performance in two lidar transect directions (i.e., north-south and west-east); (iii) a small lidar extent (17.6% of total size) can achieve similar canopy height estimation accuracies as those modeled from the full lidar scene; and (iv) different MOS can lead to distinctly different canopy height results. By comparing the best canopy height estimate with the full lidar canopy height data, we obtained average estimation errors of 6.0 m and 6.8 m for conifer and deciduous forests at the individual tree crown/small tree cluster level, and an area weighted combined error of 6.2 m, which is lower than the provincial forest inventory height class interval (i.e., ≈ 9.0 m).  相似文献   

2.
Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, this lengthy revisit rate often results in a dearth of imagery for a desired time interval (e.g., month, growing season, or year) especially for areas at higher latitudes with shorter growing seasons. In contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high temporal resolution, covering the Earth up to multiple times per day, and depending on the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In this research, we apply and demonstrate a data fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in central British Columbia, Canada. Reflectance data for selected MODIS channels, all of which were resampled to 500 m, and Landsat (at 30 m) were combined to produce 18 synthetic Landsat images encompassing the 2001 growing season (May to October). We compared, on a channel-by-channel basis, the surface reflectance values (stratified by broad land cover types) of four real Landsat images with the corresponding closest date of synthetic Landsat imagery, and found no significant difference between real (observed) and synthetic (predicted) reflectance values (mean difference in reflectance: mixed forest x? = 0.086, σ = 0.088, broadleaf x? = 0.019, σ = 0.079, coniferous x? = 0.039, σ = 0.093). Similarly, a pixel based analysis shows that predicted and observed reflectance values for the four Landsat dates were closely related (mean r2 = 0.76 for the NIR band; r2 = 0.54 for the red band; p < 0.01). Investigating the trend in NDVI values in synthetic Landsat values over a growing season revealed that phenological patterns were well captured; however, when seasonal differences lead to a change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the synthetic Landsat images was, as expected, less effective at predicting reflectance.  相似文献   

3.
Vegetation indices and transformations have been used extensively in forest change detection studies. In this study, we processed multitemporal normalized difference moisture index (NDMI) and tasseled cap wetness (TCW) data sets and compared their statistical relationships and relative efficiencies in detecting forest disturbances associated with forest type and harvest intensity at five, two and one year Landsat acquisition intervals. The NDMI and TCW were highly correlated (>0.95 r2) for all five image dates. There was no significant difference between TCW and NDMI for detecting forest disturbance. Using either a NDMI or TCW image differencing method, when Landsat image acquisitions were 5 years apart, clear cuts could be detected with nearly equal accuracy compared to images collected 2 years apart. Partial cuts had much higher commission and omission errors compared to clear cut. Both methods had 7-8% higher commission and 12-22% higher omission error to detect hardwood disturbance when it occurred in the first year of the 2-year interval (as compared to 1-year interval). Softwood and hardwood change detection errors were slightly higher at 2-year Landsat acquisition intervals compared to 1-year interval. For images acquired 1 and 2 years apart, NDMI forest disturbance commission and omission errors were slightly lower than TCW. The NDMI can be calculated using any sensor that has near-infrared and shortwave bands and is at least as accurate as TCW for detecting forest type and intensity disturbance in biomes similar to the Maine forest, particularly when Landsat images are acquired less than 2 years apart. Where partial cutting is the most dominant harvesting system as is currently the case in northern Maine, we recommend images collected every year to minimize (particularly omission) errors. However, where clear cuts or nearly complete canopy removal occurs, Landsat intervals of up to 5 years may be nearly as accurate in detecting forest change as 1 or 2 year intervals.  相似文献   

4.
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran.  相似文献   

5.
Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, “young” forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of “young” forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R2 and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS-VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5 m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed.  相似文献   

6.
Forest succession is a fundamental ecological process which can impact the functioning of many terrestrial processes, such as water and nutrient cycling and carbon sequestration. Therefore, knowing the distribution of forest successional stages over a landscape facilitates a greater understanding of terrestrial ecosystems. One way of characterizing forest succession over the landscape is to use satellite imagery to map forest successional stages continuously over a region. In this study we use a forest succession model (ZELIG) and a canopy reflectance model (GORT) to produce spectral trajectories of forest succession from young to old-growth stages, and compared the simulated trajectories with those constructed from Landsat Thematic Mapper (TM) imagery to understand the potential of mapping forest successional stages with remote sensing. The simulated successional trajectories captured the major characteristics of observed regional mean succession trajectory with Landsat TM imagery for Tasseled Cap indices based on age information from the Pacific Northwest Forest Inventory and Analysis Integrated Database produced by Pacific Northwest Research Station, USDA Forest Service. Though the successional trajectories are highly nonlinear in the early years of succession, a linear model fits well the regional mean successional trajectories for brightness and greenness due to significant cross-site variations that masked the nonlinearity over a regional scale (R2 = 0.8951 for regional mean brightness with age; R2 = 0.9348 for regional mean greenness with age). Regression analysis found that Tasseled Cap brightness and greenness are much better predictors of forest successional stages than wetness index based on the data analyzed in this study. The spectral history based on multitemporal Landsat imagery can be used to effectively identify mature and old-growth stands whose ages do not match with remote sensing signals due to change occurred during the time between ground data collection and image acquisition. Multitemporal Landsat imagery also improves prediction of forest successional stages. However, a linear model on a stand basis has a limited predictive power of forest stand successional stages (adjusted R2 = 0.5435 using the Tasseled Cap indices from all four images used in this study) due to significant variations in remote sensing signals for stands at the same successional stage. Therefore, accurate prediction of forest successional stage using remote sensing imagery at stand scale requires accounting for site-specific factors influence remotely sensed signals in the future.  相似文献   

7.
Lidar provides enhanced abilities to remotely map leaf area index (LAI) with improved accuracies. We aim to further explore the capability of discrete-return lidar for estimating LAI over a pine-dominated forest in East Texas, with a secondary goal to compare the lidar-derived LAI map and the GLOBCARBON moderate-resolution satellite LAI product. Specific problems we addressed include (1) evaluating the effects of analysts and algorithms on in-situ LAI estimates from hemispherical photographs (hemiphoto), (2) examining the effectiveness of various lidar metrics, including laser penetration, canopy height and foliage density metrics, to predict LAI, (3) assessing the utility of integrating Quickbird multispectral imagery with lidar for improving the LAI estimate accuracy, and (4) developing a scheme to co-register the lidar and satellite LAI maps and evaluating the consistency between them. Results show that the use of different analysts or algorithms in analyzing hemiphotos caused an average uncertainty of 0.35 in in-situ LAI, and that several laser penetration metrics in logarithm models were more effective than other lidar metrics, with the best one explaining 84% of the variation in the in-situ LAI (RMSE = 0.29 LAI). The selection of plot size and height threshold in calculating laser penetration metrics greatly affected the effectiveness of these metrics. The combined use of NDVI and lidar metrics did not significantly improve estimation over the use of lidar alone. We also found that mis-registration could induce a large artificial discrepancy into the pixelwise comparison between the coarse-resolution satellite and fine-resolution lidar-derived LAI maps. By compensating for a systematic sub-pixel shift error, the correlation between two maps increased from 0.08 to 0.85 for pines (n = 24 pixels). However, the absolute differences between the two LAI maps still remained large due to the inaccuracy in accounting for clumping effects. Overall, our findings imply that lidar offers a superior tool for mapping LAI at local to regional scales as compared to optical remote sensing, accuracies of lidar-estimate LAI are affected not only by the choice of models but also by the absolute accuracy of in-situ reference LAI used for model calibration, and lidar-derived LAI maps can serve as reliable references for validating moderate-resolution satellite LAI products over large areas.  相似文献   

8.
A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16°. To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required.This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16° were considered for a 25 m diameter footprint diameter.Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R2 of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.  相似文献   

9.
In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression relationships with the isotropic, geometric, and volume scattering kernel weights of a Li-Ross kernel-driven bidirectional reflectance distribution function (BRDF) model. The height retrievals were assessed using discrete return lidar data acquired over sites in Colorado as part of the Cold Land Processes Experiment (CLPX) and used with fractional crown cover retrievals to obtain aboveground woody biomass estimates. For all model runs with reasonable backgrounds and initial b/r (vertical to horizontal crown radii) values < 2.0, root mean square error (RMSE) distributions were centered between 2.5 and 3.7 m while R2 distributions were centered between 0.4 and 0.7. The MISR/GO aboveground biomass estimates predicted via regression on fractional cover and mean canopy height for the CLPX sites showed good agreement with U.S. Forest Service Interior West map data (adjusted R2 = 0.84). The implication is that multiangle sensors such as MISR can provide spatially contiguous retrievals of forest canopy height, cover, and aboveground woody biomass that are potentially useful in mapping distributions of aboveground carbon stocks, tracking disturbance, and in initializing, constraining, and validating ecosystem models. This is important because the MISR record is spatially comprehensive and extends back to the year 2000 and the launch of the NASA Earth Observing System (EOS) Terra satellite; it might thus provide a ~ 10-year baseline record that would enhance exploitation of data from the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, as well as furthering realization of synergies with active instruments.  相似文献   

10.
Forest dynamics are characterized by both continuous (i.e., growth) and discontinuous (i.e., disturbance) changes. Change detection techniques that use optical remotely sensed data to capture disturbance related changes are established and commonly applied; however, approaches for the capture of continuous forest changes are less mature. Optical remotely sensed imagery is well suited for capturing horizontally distributed conditions, structures, and changes, while Light Detection And Ranging (LIDAR) data are more appropriate for capturing vertically distributed elements of forest structure and change. The integration of optical remotely sensed imagery and LIDAR data provides improved opportunities to fully characterize forest canopy attributes and dynamics.The study described in this paper captures forest conditions along a corridor approximately 600 km long through the boreal forest of Canada. Two coincident LIDAR transects, representing 1997 and 2002 forest conditions respectively, are compared using image segments generated from Landsat ETM+ imagery. The image segments are used to provide a spatial framework within which the attributes and temporal dynamics of the forest canopy are estimated and compared. Segmented and classified Landsat imagery provides a context for the comparison of sufficiently spatially related LIDAR profiles and for the provision of categories to aid in the application of empirical models requiring knowledge of land cover.Global and local approaches were employed for characterizing changes in forest attributes over time. The global approach, emphasized the overall trend in forest change along the length of the entire transect, and indicated that key canopy attributes were stable, and transect characteristics, including forest canopy height, did not change significantly over the five-year period of this study (two sample t-test, p = 0.08). The local approach analyzed segment-based changes in canopy attributes, providing spatially explicit indications of forest growth and depletion. The local approach identified that 84% of the Landsat segments intercepted by both LIDAR transects either have no change, or have a small average increase in canopy height (0.7 m), while the other 16% of segments have an average decrease in canopy height of 1.6 m. As expected, the difference in the magnitude of the changes was markedly greater for depletions than it was for growth, but was less spatially extensive. Growth tends to occur incrementally over broad areas; whereas, depletions are dramatic and spatially constrained. The approach presented holds potential for investigating the impacts of climate change across a latitudinal gradient of boreal forest.  相似文献   

11.
Information regarding the extent, timing and magnitude of forest disturbance are key inputs required for accurate estimation of the terrestrial carbon balance. Equally important for studying carbon dynamics is the ability to distinguish the cause or type of forest disturbance occurring on the landscape. Wildfire and timber harvesting are common disturbances occurring in boreal forests, with each having differing carbon consequences (i.e., biomass removed, recovery rates). Development of methods to not only map, but distinguish these types of disturbance with satellite data will depend upon an improved understanding of their distinctive spectral properties. In this study, we mapped wildfires and clearcut harvests occurring in a Landsat time series (LTS) acquired in the boreal plains of Saskatchewan, Canada. This highly accurate reference map (kappa = 0.91) depicting the year and cause of historical disturbances was used to determine the spectral and temporal properties needed to accurately classify fire and clearcut disturbances. The results showed that spectral data from the short-wave infrared (SWIR; e.g., Landsat band 5) portion of the electromagnetic spectrum was most effective at separating fires and clearcut harvests possibly due to differences in structure, shadowing, and amounts of exposed soil left behind by the two disturbance types. Although SWIR data acquired 1 year after disturbance enabled the most accurate discrimination of fires and clearcut harvests, good separation (e.g., kappa ≥ 0.80) could still be achieved with Landsat band 5 and other SWIR-based indices 3 to 4 years after disturbance. Conversely, minimal disturbance responses in near infrared-based indices associated with green leaf area (e.g., NDVI) led to unreliably low classification accuracies regardless of time since disturbance. In addition to exploring the spectral and temporal manifestation of forest disturbance types, we also demonstrate how Landsat change maps which attribute cause of disturbance can be used to help elucidate the social, ecological and carbon consequences associated with wildfire and clearcut harvesting in Canadian boreal forests.  相似文献   

12.
Forest biomass mapping from lidar and radar synergies   总被引:2,自引:0,他引:2  
The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed.In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R2 of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and was used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar-SAR synergy was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the potential of the combined use of lidar samples and radar imagery for forest biomass mapping. Various issues regarding lidar/radar data synergies for biomass mapping are discussed in the paper.  相似文献   

13.
14.
Investigating the temporal and spatial pattern of landscape disturbances is an important requirement for modeling ecosystem characteristics, including understanding changes in the terrestrial carbon cycle or mapping the quality and abundance of wildlife habitats. Data from the Landsat series of satellites have been successfully applied to map a range of biophysical vegetation parameters at a 30 m spatial resolution; the Landsat 16 day revisit cycle, however, which is often extended due to cloud cover, can be a major obstacle for monitoring short term disturbances and changes in vegetation characteristics through time.The development of data fusion techniques has helped to improve the temporal resolution of fine spatial resolution data by blending observations from sensors with differing spatial and temporal characteristics. This study introduces a new data fusion model for producing synthetic imagery and the detection of changes termed Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH). The algorithm is designed to detect changes in reflectance, denoting disturbance, using Tasseled Cap transformations of both Landsat TM/ETM and MODIS reflectance data. The algorithm has been tested over a 185 × 185 km study area in west-central Alberta, Canada. Results show that STAARCH was able to identify spatial and temporal changes in the landscape with a high level of detail. The spatial accuracy of the disturbed area was 93% when compared to the validation data set, while temporal changes in the landscape were correctly estimated for 87% to 89% of instances for the total disturbed area. The change sequence derived from STAARCH was also used to produce synthetic Landsat images for the study period for each available date of MODIS imagery. Comparison to existing Landsat observations showed that the change sequence derived from STAARCH helped to improve the prediction results when compared to previously published data fusion techniques.  相似文献   

15.
Quantifying aboveground biomass in forest ecosystems is required for carbon stock estimation, aspects of forest management, and further developing a capacity for monitoring carbon stocks over time. Airborne Light Detection And Ranging (LiDAR) systems, of all remote sensing technologies, have been demonstrated to yield the most accurate estimates of aboveground biomass for forested areas over a wide range of biomass values. However, these systems are limited by considerations including large data volumes and high costs. Within the constraints imposed by the nature of the satellite mission, the GeoScience Laser Altimeter System (GLAS) aboard ICESat has provided data conferring information regarding forest vertical structure for large areas at a low end user cost. GLAS data have been demonstrated to accurately estimate forest height and aboveground biomass especially well in topographically smooth areas with homogeneous forested conditions. However in areas with dense forests, high relief, or heterogeneous vegetation cover, GLAS waveforms are more complex and difficult to consistently characterize. We use airborne discrete return LiDAR data to simulate GLAS waveforms and to subsequently deconstruct coregistered GLAS waveforms into vegetation and ground returns. A series of waveform metrics was calculated and compared to topography and vegetation information gleaned from the airborne data. A model to estimate maximum relief directly from waveform metrics was developed with an R2 of 0.76 (n = 110), and used for the classification of the maximum relief of the areas sensed by GLAS. Discriminant analysis was also conducted as an alternative classification technique. A model was also developed estimating forest canopy height from waveform metrics for all of the data (R2 = 0.81, n = 110) and for the three separate relief classes; maximum relief 0-7 m (R2 = 0.83, n = 44), maximum relief 7-15 m (R2 = 0.88, n = 41) and maximum relief > 15 m (R2 = 0.75, n = 25). The moderate relief class model yielded better predictions of forest height than the low relief class model which is attributed to the increasing variability of waveform metrics with terrain relief. The moderate relief class model also yielded better predictions than the high relief class model because of the mixing of vegetation and terrain signals in waveforms from high relief footprints. This research demonstrates that terrain can be accurately modeled directly from GLAS waveforms enabling the inclusion of terrain relief, on a waveform specific basis, as supplemental model input to improve estimates of canopy height.  相似文献   

16.
High spatial resolution remotely sensed data has the potential to complement existing forest health programs for both strategic planning over large areas, as well as for detailed and precise identification of tree crowns subject to stress and infestation. The area impacted by the current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia, Canada, has increased 40-fold over the previous 5 years, with approximately 8.5 million ha of forest infested in 2005. As a result of the spatial extent and intensity of the outbreak, new technologies are being assessed to help detect, map, and monitor the damage caused by the beetle, and to inform mitigation of future beetle outbreaks. In this paper, we evaluate the capacity of high spatial resolution QuickBird multi-spectral imagery to detect mountain pine beetle red attack damage. ANOVA testing of individual spectral bands, as well as the Normalized Difference Vegetation Index (NDVI) and a ratio of red to green reflectance (Red-Green Index or RGI), indicated that the RGI was the most successful (p < 0.001) at separating non-attack crowns from red attack crowns. Based on this result, the RGI was subsequently used to develop a binary classification of red attack and non-attack pixels. The total number of QuickBird pixels classified as having red attack damage within a 50 m buffer of a known forest health survey point were compared to the number of red attack trees recorded at the time of the forest health survey. The relationship between the number of red attack pixels and observed red attack crowns was assessed using independent validation data and was found to be significant (r2 = 0.48, p < 0.001, standard error = 2.8 crowns). A comparison of the number of QuickBird pixels classified as red attack, and a broader scale index of mountain pine beetle red attack damage (Enhanced Wetness Difference Index, calculated from a time series of Landsat imagery), was significant (r2 = 0.61, p < 0.001, standard error = 1.3 crowns). These results suggest that high spatial resolution imagery, in particular QuickBird satellite imagery, has a valuable role to play in identifying tree crowns with red attack damage. This information could subsequently be used to augment existing detailed forest health surveys, calibrate synoptic estimates of red attack damage generated from overview surveys and/or coarse scale remotely sensed data, and facilitate the generation of value-added information products, such as estimates of timber volume impacts at the forest stand level.  相似文献   

17.
Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated algorithm that exploits the spectral-temporal properties of summer Landsat time series stacks (LTSSs) to generate spatially explicit maps of forest and recent forest disturbances. VCT performs well in contiguous forest landscapes with closed or nearly closed canopies, but often incorrectly classifies large patches of land as forest or forest disturbance in the complex and spatially heterogeneous environments that typify fragmented forest landscapes. We introduce an improved version of VCT (dubbed VCTw) that incorporates a nonforest mask derived from snow-covered winter Landsat time series stacks (LTSSw) and compare it with VCT across nearly 25 million ha of land in the Lake Superior (Canada, USA) and Lake Michigan (USA) drainage basins.Accuracy assessments relying on 87 primary sampling units (PSUs) and 2640 secondary sampling units (SSUs) indicated that VCT performed with an overall accuracy of 86.3%. For persisting forest, the commission error was 14.7% and the omission error was 4.3%. Commission and omission errors for the two forest disturbance classes fluctuated around 50%. VCTw produced a statistically significant increase in overall accuracy to 91.2% and denoted about 1.115 million ha less forest (− .371 million ha disturbed and − 0.744 million ha persisting). For persisting forest, the commission error decreased to 9.3% and the omission error was relatively unchanged at 5.0%. Commission errors decreased considerably to near 22% and omission errors remained near 50% in both forest disturbance classes.Dividing the assessments into three geographic strata demonstrated that the most dramatic improvement occurred across the southern half of the Lake Michigan basin, which contains a highly fragmented agricultural landscape and relatively sparse deciduous forest, although substantial improvements occurred in other geographic strata containing little agricultural land, abundant wetlands, and extensive coniferous forest. Unlike VCT, VCTw also generally corresponded well with field-based estimates of forest cover in each stratum. Snow-covered winter imagery appears to be a valuable resource for improving automated disturbance mapping accuracy. About 34% of the world's forests receive sufficient snowfall to cover the ground and are potentially suitable for VCTw; other season-based techniques may be worth pursuing for the remaining 66%.  相似文献   

18.
Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different (β < 0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by − 0.91 m with RMSE = 2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna® lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.  相似文献   

19.
Insects are important forest disturbance agents, and mapping their effects on tree mortality and surface fuels represents a critical research challenge. Although various remote sensing approaches have been developed to monitor insect impacts, most studies have focused on single insect agents or single locations and have not related observed changes to ground-based measurements. This study presents a remote sensing framework to (1) characterize spectral trajectories associated with insect activity of varying duration and severity and (2) relate those trajectories to ground-based measurements of tree mortality and surface fuels in the Cascade Range, Oregon, USA. We leverage a Landsat time series change detection algorithm (LandTrendr), annual forest health aerial detection surveys (ADS), and field measurements to investigate two study landscapes broadly applicable to conifer forests and dominant insect agents of western North America. We distributed 38 plots across multiple forest types (ranging from mesic mixed-conifer to xeric lodgepole pine) and insect agents (defoliator [western spruce budworm] and bark beetle [mountain pine beetle]). Insect effects were evident in the Landsat time series as combinations of both short- and long-duration changes in the Normalized Burn Ratio spectral index. Western spruce budworm trajectories appeared to show a consistent temporal evolution of long-duration spectral decline (loss of vegetation) followed by recovery, whereas mountain pine beetle plots exhibited both short- and long-duration spectral declines and variable recovery rates. Although temporally variable, insect-affected stands generally conformed to four spectral trajectories: short-duration decline then recovery, short- then long-duration decline, long-duration decline, long-duration decline then recovery. When comparing remote sensing data with field measurements of insect impacts, we found that spectral changes were related to cover-based estimates (tree basal area mortality [R2adj = 0.40, F1,34 = 24.76, P < 0.0001] and down coarse woody detritus [R2adj = 0.29, F1,32 = 14.72, P = 0.0006]). In contrast, ADS changes were related to count-based estimates (e.g., ADS mortality from mountain pine beetle positively correlated with ground-based counts [R2adj = 0.37, F1,22 = 14.71, P = 0.0009]). Fine woody detritus and forest floor depth were not well correlated with Landsat- or aerial survey-based change metrics. By characterizing several distinct temporal manifestations of insect activity in conifer forests, this study demonstrates the utility of insect mapping methods that capture a wide range of spectral trajectories. This study also confirms the key role that satellite imagery can play in understanding the interactions among insects, fuels, and wildfire.  相似文献   

20.
Wildfire is an important disturbance agent in Canada's boreal forest. Optical remotely sensed imagery (e.g., Landsat TM/ETM+), is well suited for capturing horizontally distributed forest conditions, structure, and change, while Light Detection and Ranging (LIDAR) data are more appropriate for capturing vertically distributed elements of forest structure and change. The integration of optical remotely sensed imagery and LIDAR data provides improved opportunities to characterize post-fire conditions. The objective of this study is to compare changes in forest structure, as measured with a discrete return profiling LIDAR, to post-fire conditions, as measured with remotely sensed data. Our research is focused on a boreal forest fire that occurred in May 2002 in Alberta, Canada. The Normalized Burn Ratio (NBR), the differenced NBR (dNBR), and the relative dNBR (RdNBR) were calculated from two dates of Landsat data (August 2001 and September 2002). Forest structural attributes were derived from two spatially coincident discrete return LIDAR profiles acquired in September 1997 and 2002 respectively. Image segmentation was used to produce homogeneous spatial patches analogous to forest stands, with analysis conducted at this patch level.In this study area, which was relatively homogenous and dominated by open forest, no statistically significant relationships were found between pre-fire forest structure and post-fire conditions (< 0.5; > 0.05). Post-fire forest structure and absolute and relative changes in forest structure were strongly correlated to post-fire conditions (r ranging from − 0.507 to 0.712; < 0.0001). Measures of vegetation fill (VF) (LIDAR capture of cross-sectional vegetation amount), post-fire and absolute change in crown closure (CC), and relative change in average canopy height, were most useful for characterizing post-fire conditions. Forest structural attributes generated from the post-fire LIDAR data were most strongly correlated to post-fire NBR, while dNBR and RdNBR had stronger correlations with absolute and relative changes in the forest structural attributes. Absolute and relative changes in VF and changes in CC had the strongest positive correlations with respect to dNBR and RdNBR, ranging from 0.514 to 0.715 (p < 0.05). Measures of average inter-tree distance and volume were not strongly correlated to post-fire NBR, dNBR, or RdNBR. No marked differences were found in the strength or significance of correlations between post-fire structure and the post-fire NBR, dNBR, RdNBR, indicating that for the conditions present in this study area all three burn severity indices captured post-fire conditions in a similar manner. Finally, the relationship between post-fire forest structure and post-fire condition was strongest for dense forests (> 60% crown closure) compared to open (26-60%) and sparse forests (10-25%). Forest structure information provided by LIDAR is useful for characterizing post-fire conditions and burn induced structural change, and will complement other attributes such as vegetation type and moisture, topography, and long-term weather patterns, all of which will also influence variations in post-fire conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号