首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperspectral remote sensing has great potential for accurate retrieval of forest biochemical parameters. In this paper, a hyperspectral remote sensing algorithm is developed to retrieve total leaf chlorophyll content for both open spruce and closed forests, and tested for open forest canopies. Ten black spruce (Picea mariana (Mill.)) stands near Sudbury, Ontario, Canada, were selected as study sites, where extensive field and laboratory measurements were carried out to collect forest structural parameters, needle and forest background optical properties, and needle biophysical parameters and biochemical contents chlorophyll a and b. Airborne hyperspectral remote sensing imagery was acquired, within one week of ground measurements, by the Compact Airborne Spectrographic Imager (CASI) in a hyperspectral mode, with 72 bands and half bandwidth 4.25-4.36 nm in the visible and near-infrared region and a 2 m spatial resolution. The geometrical-optical model 4-Scale and the modified leaf optical model PROSPECT were combined to estimate leaf chlorophyll content from the CASI imagery. Forest canopy reflectance was first estimated with the measured leaf reflectance and transmittance spectra, forest background reflectance, CASI acquisition parameters, and a set of stand parameters as inputs to 4-Scale. The estimated canopy reflectance agrees well with the CASI measured reflectance in the chlorophyll absorption sensitive regions, with discrepancies of 0.06%-1.07% and 0.36%-1.63%, respectively, in the average reflectances of the red and red-edge region. A look-up-table approach was developed to provide the probabilities of viewing the sunlit foliage and background, and to determine a spectral multiple scattering factor as functions of leaf area index, view zenith angle, and solar zenith angle. With the look-up tables, the 4-Scale model was inverted to estimate leaf reflectance spectra from hyperspectral remote sensing imagery. Good agreements were obtained between the inverted and measured leaf reflectance spectra across the visible and near-infrared region, with R2 = 0.89 to R2 = 0.97 and discrepancies of 0.02%-3.63% and 0.24%-7.88% in the average red and red-edge reflectances, respectively. Leaf chlorophyll content was estimated from the retrieved leaf reflectance spectra using the modified PROSPECT inversion model, with R2 = 0.47, RMSE = 4.34 μg/cm2, and jackknifed RMSE of 5.69 μg/cm2 for needle chlorophyll content ranging from 24.9 μg/cm2 to 37.6 μg/cm2. The estimates were also assessed at leaf and canopy scales using chlorophyll spectral indices TCARI/OSAVI and MTCI. An empirical relationship of simple ratio derived from the CASI imagery to the ground-measured leaf area index was developed (R2 = 0.88) to map leaf area index. Canopy chlorophyll content per unit ground surface area was then estimated, based on the spatial distributions of leaf chlorophyll content per unit leaf area and the leaf area index.  相似文献   

2.
3.
Leaf area index (LAI) is an important parameter used by most process-oriented ecosystem models. LAI of forest ecosystems has routinely been mapped using spectral vegetation indices (SVI) derived from remote sensing imagery. The application of SVI-based approaches to map LAI in peatlands presents a challenge, mainly due to peatlands characteristic multi-layer canopy comprising shrubs and open, discontinuous tree canopies underlain by a continuous ground cover of different moss species, which reduces the greenness contrast between the canopy and the background.Our goal is to develop a methodology to map tree and shrub LAI in peatlands and similar ecosystems based on multiple endmember spectral mixture analysis (MESMA). This new mapping method is validated using LAI field measurements from a precipitation-fed (ombrotrophic) peatland near Ottawa, Ontario, Canada. We demonstrate first that three commonly applied SVI are not suitable for tree and shrub LAI mapping in ombrotrophic peatlands. Secondly, we demonstrate for a three-endmember model the limitations of traditional linear spectral mixture analysis (SMA) due to the unique and widely varying spectral characteristics of Sphagnum mosses, which are significantly different from vascular plants. Next, by using a geometric-optical radiative transfer model, we determine the nature of the equation describing the empirical relationship between shadow fraction and tree LAI using nonlinear ordinary least square (OLS) regression. We then apply this equation to describe the empirical relationships between shadow and shrub fractions obtained from mixture decomposition with SMA and MESMA, respectively, and tree and shrub LAI, respectively. Less accurate fractions obtained from SMA result in weaker relationships between shadow fraction and tree LAI (R2 = 0.61) and shrub fraction and shrub LAI (R2 = 0.49) compared to the same relationships based on fractions obtained from MESMA with R2 = 0.75 and R2 = 0.68, respectively. Cross-validation of tree LAI (R2 = 0.74; RMSE = 0.48) and shrub LAI (R2 = 0.68; RMSE = 0.42) maps using fractions from MESMA shows the suitability of this approach for mapping tree and shrub LAI in ombrotrophic peatlands. The ability to account for a spectrally varying, unique Sphagnum moss ground cover during mixture decomposition and a two layer canopy is particularly important.  相似文献   

4.
Assessing structural effects on PRI for stress detection in conifer forests   总被引:2,自引:0,他引:2  
The retrieval of indicators of vegetation stress from remote sensing imagery is an important issue for the accurate assessment of forest decline. The Photochemical Reflectance Index (PRI) has been demonstrated as a physiological index sensitive to the epoxidation state of the xanthophyll cycle pigments and to photosynthetic efficiency, serving as a proxy for short-term changes in photosynthetic activity, stress condition, and pigment absorption, but highly affected by illumination conditions, viewing geometry and canopy structure. In this study, a diurnal airborne campaign was conducted over Pinus sylvestris and Pinus nigra forest areas with the Airborne Hyperspectral Scanner (AHS) to evaluate the effects of canopy structure on PRI when used as an indicator of stress in a conifer forest. The AHS airborne sensor was flown at two times (8:00 GMT and 12:00 GMT) over forest areas under varying field-measured stress levels, acquiring 2 m spatial resolution imagery in 80 spectral bands in the 0.43-12.5 μm spectral range. Five formulations of PRI (based on R531 as a xanthophyll-sensitive spectral band) were calculated using different reference wavelengths, such as PRI570 (reference band RREF = R570), and the PRI modifications PRIm1 (RREF = R512), PRIm2 (RREF = R600), PRIm3 (RREF = R670), and PRIm4 (RREF = R570, R670), along with other structural indices such as NDVI, SR, OSAVI, MSAVI and MTVI2. In addition, thermal bands were used for the retrieval of the land surface temperature. A radiative transfer modeling method was conducted using the LIBERTY and INFORM models to assess the structural effects on the PRI formulations proposed, studying the sensitivity of PRIm indices to detect stress levels while minimizing the effects caused by the conifer architecture. The PRI indices were related to stomatal conductance, xanthophyll epoxidation state (EPS) and crown temperature. The modeling analysis showed that the coefficient of variation (CV) for PRI was 50%, whereas the CV for PRIm1 (band R512 as a reference) was only 20%. Simulation and experimental results demonstrated that PRIm1 (RREF = R512) was less sensitive than PRI (RREF = R570) to changes in Leaf Area Index (LAI) and tree densities. PRI512 was demonstrated to be sensitive to EPS at both leaf (r2 = 0.59) and canopy level (r2 = 0.40), yielding superior performance than PRI570 (r2 = 0.21) at the canopy level. In addition, PRI512 was significantly related to water stress indicators such as stomatal conductance (Gs; r2 = 0.45) and water potential (Ψ; r2 = 0.48), yielding better results than PRI570 (Gs, r2 = 0.21; Ψ, r2 = 0.21) due to the structural effects found on the PRI570 index at the canopy level.  相似文献   

5.
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran.  相似文献   

6.
7.
This investigation quantitatively links chlorophyll a + b (chl a b) concentration, a physiological marker of forest health condition, to hyperspectral observations of Jack Pine (Pinus banksiana), a dominant Boreal forest species. Compact Airborne Spectrographic Imager (CASI) observations, in the visible-near infrared domain, were acquired over eight selected Jack Pine sites, near Sudbury, Ontario, between June and September of 2001. Supplementing the airborne campaigns was concurrent on-site collection of foliage samples for laboratory spectral and chemical measurements. The study first connected needle-level optical properties with pigment concentration through the inversion of radiative transfer models, LIBERTY and PROSPECT. Next, a chlorophyll sensitive optical index (R750/R710), was “scaled-up” using SAILH, a turbid medium canopy model, to estimate total pigment content at the canopy-level. Due to the potential confounding effects of open canopy structure and foliage clumping, the analysis accordingly focused on high spatial resolution CASI imagery (1 m) to visually target tree crowns, while accounting for shadowed areas. Chl a b concentration estimation from airborne spectral data using coupled leaf and canopy models was shown to be feasible with a root mean square error of 5.3 μg/cm2, for a pigment range of 25.7 to 45.9 μg/cm2. Such predictive algorithms using airborne-level data provide the methodology to be potentially scaled-up to satellite-level hyperspectral platforms for large scale monitoring of vegetation productivity and forest stand condition.  相似文献   

8.
An important bio-indicator of actual plant health status, the foliar content of chlorophyll a and b (Cab), can be estimated using imaging spectroscopy. For forest canopies, however, the relationship between the spectral response and leaf chemistry is confounded by factors such as background (e.g. understory), canopy structure, and the presence of non-photosynthetic vegetation (NPV, e.g. woody elements)—particularly the appreciable amounts of standing and fallen dead wood found in older forests. We present a sensitivity analysis for the estimation of chlorophyll content in woody coniferous canopies using radiative transfer modeling, and use the modeled top-of-canopy reflectance data to analyze the contribution of woody elements, leaf area index (LAI), and crown cover (CC) to the retrieval of foliar Cab content. The radiative transfer model used comprises two linked submodels: one at leaf level (PROSPECT) and one at canopy level (FLIGHT). This generated bidirectional reflectance data according to the band settings of the Compact High Resolution Imaging Spectrometer (CHRIS) from which chlorophyll indices were calculated. Most of the chlorophyll indices outperformed single wavelengths in predicting Cab content at canopy level, with best results obtained by the Maccioni index ([R780 − R710] / [R780 − R680]). We demonstrate the performance of this index with respect to structural information on three distinct coniferous forest types (young, early mature and old-growth stands). The modeling results suggest that the spectral variation due to variation in canopy chlorophyll content is best captured for stands with medium dense canopies. However, the strength of the up-scaled Cab signal weakens with increasing crown NPV scattering elements, especially when crown cover exceeds 30%. LAI exerts the least perturbations. We conclude that the spectral influence of woody elements is an important variable that should be considered in radiative transfer approaches when retrieving foliar pigment estimates in heterogeneous stands, particularly if the stands are partly defoliated or long-lived.  相似文献   

9.
A validation of the 2005 500 m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into 7 longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R2 = 0.77) and exhibited an average root mean square error (RMSE) of 10.1% and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R2 = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R2 = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500 m pixel-level tree cover in the taiga-tundra transition zone.  相似文献   

10.
Estimation of diurnal air temperature using MSG SEVIRI data in West Africa   总被引:6,自引:0,他引:6  
Spatially distributed air temperature data with high temporal resolution are desired for several modeling applications. By exploiting the thermal split window channels in combination with the red and near infrared channels of the geostationary MSG SEVIRI sensor, multiple daily air temperature estimates can be achieved using the contextual temperature-vegetation index method. Air temperature was estimated for 436 image acquisitions during the 2005 rainy season over West Africa and evaluated against in situ data from a field test site in Dahra, Northern Senegal. The methodology was adjusted using data from the test site resulting in RMSE = 2.55 K, MBE = − 0.30 K and R2 = 0.63 for the estimated versus observed air temperatures. A spatial validation of the method using 12 synoptic weather stations from Senegal and Mali within the Senegal River basin resulted in overall values of RMSE = 2.96 K, MBE = − 1.11 K and R2 = 0.68. The daytime temperature curve is interpolated using a sine function based on the multiple daily air temperature estimates from the SEVIRI data. These estimates (covering the 8:00-20:00 UCT time window) were in good agreement with observed values with RMSE = 2.99 K, MBE = − 0.70 K and R2 = 0.64. The temperature-vegetation index method was applied as a moving window technique to produce distributed maps of air temperature with 15 min intervals and 3 km spatial resolution for application in a distributed hydrological model.  相似文献   

11.
Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved by utilizing the high temporal resolution of the geostationary MSG-SEVIRI sensor. With 15 min acquisition intervals, the MSG-SEVIRI data allow for a precise estimation of the morning rise in land surface temperature which is a strong proxy for total daytime sensible heat fluxes. Combining the diurnal change in surface temperature, dTs with an interpretation of the triangular shaped dTs − NDVI space allows for a direct estimation of evaporative fraction. The mean daytime energy available for evapotranspiration (Rn − G) is estimated using several remote sensors and limited ancillary data. Finally regional estimates of actual evapotranspiration are made by combining evaporative fraction and available energy estimates. The estimated evaporative fraction (EF) and actual evapotranspiration (ET) for the Senegal River basin have been validated against field observations for the rainy season 2005. The validation results showed low biases and RMSE and R2 of 0.13 [−] and 0.63 for EF and RMSE of 41.45 W m− 2 and R2 of 0.66 for ET.  相似文献   

12.
The application of adequate nitrogen (N) fertilizers to grass seed crops is important to achieve high seed yield. Application of N will inevitably result in over-fertilization on some fields and, concomitantly, an increased risk of adverse environmental impacts, such as ground- and/or surface-water contamination. This study was designed to estimate the N status of two grass seed crops: red fescue (Festuca rubra L.) and perennial ryegrass (Lolium perenne L.) using images captured with an unmanned aerial vehicle (UAV) mounted multispectral camera. Two types of UAV, a fixed-wing UAV and a multi-rotor UAV, operating at two different heights and mounted with the same multispectral camera, were used in different field experiments at the same location in Denmark in the period from 432 to 861 growing degree-days. Seven vegetation indices, calculated from multispectral images with four bands: red, green, red edge and near infrared (NIR), were evaluated for their relationship to dry matter (DM), N concentration, N uptake and N nutrition index (NNI). The results showed a better prediction of N concentration, N uptake and NNI, than DM using vegetation indices. Furthermore, among all vegetation indices, two red-edge-based indices, normalized difference red edge (NDRE) and red edge chlorophyll index (CIRE), performed best in estimating N concentration (R2 = 0.69–0.88), N uptake (R2 = 0.41–0.84) and NNI (R2 = 0.47–0.86). In addition, there was no effect from the choice of UAV, and thereby flight height, on the estimation of NNI. The choice of UAV type therefore seems not to influence the possibility of diagnosing N status in grass seed crops. We conclude that it is possible to estimate NNI based on multispectral images from drone-mounted cameras, and the method could guide farmers as to whether they should apply additional N to the field. We also conclude that further research should focus on estimating the quantity of N to apply and on further developing the method to include more grass species.  相似文献   

13.
Leaf area index (LAI) is a commonly required parameter when modelling land surface fluxes. Satellite based imagers, such as the 300 m full resolution (FR) Medium Spectral Resolution Imaging Spectrometer (MERIS), offer the potential for timely LAI mapping. The availability of multiple MERIS LAI algorithms prompts the need for an evaluation of their performance, especially over a range of land use conditions. Four current methods for deriving LAI from MERIS FR data were compared to estimates from in-situ measurements over a 3 km × 3 km region near Ottawa, Canada. The LAI of deciduous dominant forest stands and corn, soybean and pasture fields was measured in-situ using digital hemispherical photography and processed using the CANEYE software. MERIS LAI estimates were derived using the MERIS Top of Atmosphere (TOA) algorithm, MERIS Top of Canopy (TOC) algorithm, the Canada Centre for Remote Sensing (CCRS) Empirical algorithm and the University of Toronto (UofT) GLOBCARBON algorithm. Results show that TOA and TOC LAI estimates were nearly identical (R2 > 0.98) with underestimation of LAI when it is larger than 4 and overestimation when smaller than 2 over the study region. The UofT and CCRS LAI estimates had root mean square errors over 1.4 units with large (∼ 25%) relative residuals over forests and consistent underestimates over corn fields. Both algorithms were correlated (R2 > 0.8) possibly due to their use of the same spectral bands derived vegetation index for retrieving LAI. LAI time series from TOA, TOC and CCRS algorithms showed smooth growth trajectories however similar errors were found when the values were compared with the in-situ LAI. In summary, none of the MERIS LAI algorithms currently meet performance requirements from the Global Climate Observing System.  相似文献   

14.
Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass in green canopies using a spectral index, the Normalized Dry Matter Index (NDMI). This narrow-band index is based on absorption at the C-H bond stretch overtone and is correlated with leaf dry matter content in fresh green leaves. PROSPECT and SAIL model simulations suggest that the NDMI at the canopy scale is able to minimize the effects of leaf thickness and leaf water content and to maximize sensitivity to variation in canopy foliar biomass. The simulation outputs were analyzed with an ANOVA, and 87% of the variation in the NDMI is explained by leaf dry matter content. The NDMI was linearly related to foliar biomass (g cm− 2) from model simulations (R2 = 0.97). The NDMI calculated from spectral reflectances for one to four stacked leaves was also correlated with total leaf biomass (R2 = 0.59). These results suggest that it may be possible to determine foliar biomass from airborne and satellite-borne imaging spectrometers, such as NASA's HyspIRI mission.  相似文献   

15.
The gravimetric water content (GWC, %), a commonly used measure of leaf water content, describes the ratio of water to dry matter for each individual leaf. To date, the relationship between spectral reflectance and GWC in leaves is poorly understood due to the confounding effects of unpredictably varying water and dry matter ratios on spectral response. Few studies have attempted to estimate GWC from leaf reflectance spectra, particularly for a variety of species. This paper investigates the spectroscopic estimation of leaf GWC using continuous wavelet analysis applied to the reflectance spectra (350-2500 nm) of 265 leaf samples from 47 species observed in tropical forests of Panama. A continuous wavelet transform was performed on each of the reflectance spectra to generate a wavelet power scalogram compiled as a function of wavelength and scale. Linear relationships were built between wavelet power and GWC expressed as a function of dry mass (LWCD) and fresh mass (LWCF) in order to identify wavelet features (coefficients) that are most sensitive to changes in GWC. The derived wavelet features were then compared to three established spectral indices used to estimate GWC across a wide range of species.Eight wavelet features observed between 1300 and 2500 nm provided strong correlations with LWCD, though correlations between spectral indices and leaf GWC were poor. In particular, two features captured amplitude variations in the broad shape of the reflectance spectra and three features captured variations in the shape and depth of dry matter (e.g., protein, lignin, cellulose) absorptions centered near 1730 and 2100 nm. The eight wavelet features used to predict LWCD and LWCF were not significantly different; however, predictive models used to determine LWCD and LWCF differed. The most accurate estimates of LWCD and LWCF obtained from a single wavelet feature showed root mean square errors (RMSEs) of 28.34% (R2 = 0.62) and 4.86% (R2 = 0.69), respectively. Models using a combination of features resulted in a noticeable improvement predicting LWCD and LWCF with RMSEs of 26.04% (R2 = 0.71) and 4.34% (R2 = 0.75), respectively. These results provide new insights into the role of dry matter absorption features in the shortwave infrared (SWIR) spectral region for the accurate spectral estimation of LWCD and LWCF. This emerging spectral analytical approach can be applied to other complex datasets including a broad range of species, and may be adapted to estimate basic leaf biochemical elements such as nitrogen, chlorophyll, cellulose, and lignin.  相似文献   

16.
Time series of satellite sensor-derived data can be used in the light use efficiency (LUE) model for gross primary productivity (GPP). The LUE model and a closely related linear regression model were studied at an ombrotrophic peatland in southern Sweden. Eddy covariance and chamber GPP, incoming and reflected photosynthetic photon flux density (PPFD), field-measured spectral reflectance, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used in this study. The chamber and spectral reflectance measurements were made on four experimental treatments: unfertilized control (Ctrl), nitrogen fertilized (N), phosphorus fertilized (P), and nitrogen plus phosphorus fertilized (NP). For Ctrl, a strong linear relationship was found between GPP and the photosynthetically active radiation absorbed by vegetation (APAR) (R2 = 0.90). The slope coefficient (εs, where s stands for “slope”) for the linear relationship between seasonal time series of GPP and the product of the normalized difference vegetation index (NDVI) and PPFD was used as a proxy for the light use efficiency factor (ε). There were differences in εs depending on the treatments with a significant effect for N compared to Ctrl (ANOVA: p = 0.042, Tukey's: p ≤ 0.05). Also, εs was linearly related to the cover degree of vascular plants (R2 = 0.66). As a sensitivity test, the regression coefficients (εs and intercept) for each treatment were used to model time series of 16-day GPP from the product of MODIS NDVI and PPFD. Seasonal averages of GPP were calculated for 2005, 2006, and 2007, which resulted in up to 19% higher average GPP for the fertilization treatments compared to Ctrl. The main conclusion is that the LUE model and the regression model can be applied in peatlands but also that temporal and spatial changes in ε or the regression coefficients should be considered.  相似文献   

17.
In this paper the possibility of predicting salt concentrations in soils from measured reflectance spectra is studied using partial least squares regression (PLSR) and artificial neural network (ANN). Performance of these two adaptive methods has been compared in order to examine linear and non-linear relationship between soil reflectance and salt concentration.Experiment-, field- and image-scale data sets were prepared consisting of soil EC measurements (dependent variable) and their corresponding reflectance spectra (independent variables). For each data set, PLSR and ANN predictive models of soil salinity were developed based on soil reflectance data. The predictive accuracies of PLSR and ANN models were assessed against independent validation data sets not included in the calibration or training phase.The results of PLSR analyses suggest that an accurate to good prediction of EC can be made based on models developed from experiment-scale data (R2 > 0.81 and RPD (ratio of prediction to deviation) > 2.1) for soil samples salinized by bischofite and epsomite minerals. For field-scale data sets, the PLSR predictive models provided approximate quantitative EC estimations (R2 = 0.8 and RPD = 2.2) for grids 1 and 6 and poor estimations for grids 2, 3, 4 and 5. The salinity predictions from image-scale data sets by PLSR models were very reliable to good (R2 between 0.86 and 0.94 and RPD values between 2.6 and 4.1) except for sub-image 2 (R2 = 0.61 and RPD = 1.2).The ANN models from experiment-scale data set revealed similar network performances for training, validation and test data sets indicating a good network generalization for samples salinized by bischofite and epsomite minerals. The RPD and the R2 between reference measurements and ANN outputs of theses models suggest an accurate to good prediction of soil salinity (R2 > 0.92 and RPD > 2.3). For the field-scale data set, prediction accuracy is relatively poor (0.69 > R2 > 0.42). The ANN predictive models estimating soil salinity from image-scale data sets indicate a good prediction (R2 > 0.86 and RPD > 2.5) except for sub-image 2 (R2 = 0.6 and RPD = 1.2).The results of this study show that both methods have a great potential for estimating and mapping soil salinity. Performance indexes from both methods suggest large similarity between the two approaches with PLSR advantages. This indicates that the relation between soil salinity and soil reflectance can be approximated by a linear function.  相似文献   

18.
Forest succession is a fundamental ecological process which can impact the functioning of many terrestrial processes, such as water and nutrient cycling and carbon sequestration. Therefore, knowing the distribution of forest successional stages over a landscape facilitates a greater understanding of terrestrial ecosystems. One way of characterizing forest succession over the landscape is to use satellite imagery to map forest successional stages continuously over a region. In this study we use a forest succession model (ZELIG) and a canopy reflectance model (GORT) to produce spectral trajectories of forest succession from young to old-growth stages, and compared the simulated trajectories with those constructed from Landsat Thematic Mapper (TM) imagery to understand the potential of mapping forest successional stages with remote sensing. The simulated successional trajectories captured the major characteristics of observed regional mean succession trajectory with Landsat TM imagery for Tasseled Cap indices based on age information from the Pacific Northwest Forest Inventory and Analysis Integrated Database produced by Pacific Northwest Research Station, USDA Forest Service. Though the successional trajectories are highly nonlinear in the early years of succession, a linear model fits well the regional mean successional trajectories for brightness and greenness due to significant cross-site variations that masked the nonlinearity over a regional scale (R2 = 0.8951 for regional mean brightness with age; R2 = 0.9348 for regional mean greenness with age). Regression analysis found that Tasseled Cap brightness and greenness are much better predictors of forest successional stages than wetness index based on the data analyzed in this study. The spectral history based on multitemporal Landsat imagery can be used to effectively identify mature and old-growth stands whose ages do not match with remote sensing signals due to change occurred during the time between ground data collection and image acquisition. Multitemporal Landsat imagery also improves prediction of forest successional stages. However, a linear model on a stand basis has a limited predictive power of forest stand successional stages (adjusted R2 = 0.5435 using the Tasseled Cap indices from all four images used in this study) due to significant variations in remote sensing signals for stands at the same successional stage. Therefore, accurate prediction of forest successional stage using remote sensing imagery at stand scale requires accounting for site-specific factors influence remotely sensed signals in the future.  相似文献   

19.
20.
Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for closed forest stands. There is a need for extending this approach to other land cover types, in order to carry out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD). Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits. Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity (GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD (R2 = 0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land surface temperature (LST) (R2 = 0.84 and 0.71). One probable reason for these results is that several controls on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely explained by diurnal LST in exponential relationships (R2 = 0.89 and 0.83), net ecosystem exchange (NEE) was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple exponential regressions (R2 = 0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE, compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号