共查询到20条相似文献,搜索用时 0 毫秒
1.
A sequential model is developed to disaggregate microwave-derived soil moisture from 40 km to 4 km resolution using MODIS (Moderate Imaging Spectroradiometer) data and subsequently from 4 km to 500 m resolution using ASTER (Advanced Scanning Thermal Emission and Reflection Radiometer) data. The 1 km resolution airborne data collected during the three-week National Airborne Field Experiment 2006 (NAFE'06) are used to simulate the 40 km pixels, and a thermal-based disaggregation algorithm is applied using 1 km resolution MODIS and 100 m resolution ASTER data. The downscaled soil moisture data are subsequently evaluated using a combination of airborne and in situ soil moisture measurements. A key step in the procedure is to identify an optimal downscaling resolution in terms of disaggregation accuracy and sub-pixel soil moisture variability. Very consistent optimal downscaling resolutions are obtained for MODIS aboard Terra, MODIS aboard Aqua and ASTER, which are 4 to 5 times the thermal sensor resolution. The root mean square error between the 500 m resolution sequentially disaggregated and ground-measured soil moisture is 0.062 vol./vol. with a bias of − 0.045 vol./vol. and values ranging from 0.08 to 0.40 vol./vol. 相似文献
2.
Rocco Panciera Jeffrey P. Walker Edward J. Kim Jean-Pierre Wigneron 《Remote sensing of environment》2009,113(2):435-3354
Soil moisture will be mapped globally by the European Soil Moisture and Ocean Salinity (SMOS) mission to be launched in 2009. The expected soil moisture accuracy will be 4.0 %v/v. The core component of the SMOS soil moisture retrieval algorithm is the L-band Microwave Emission of the Biosphere (L-MEB) model which simulates the microwave emission at L-band from the soil-vegetation layer. The model parameters have been calibrated with data acquired by tower mounted radiometer studies in Europe and the United States, with a typical footprint size of approximately 10 m. In this study, aircraft L-band data acquired during the National Airborne Field Experiment (NAFE) intensive campaign held in South-eastern Australia in 2005 are used to perform the first evaluation of the L-MEB model and its proposed parameterization when applied to coarser footprints (62.5 m). The model could be evaluated across large areas including a wide range of land surface conditions, typical of the Australian environment. Soil moisture was retrieved from the aircraft brightness temperatures using L-MEB and ground measured ancillary data (soil temperature, soil texture, vegetation water content and surface roughness) and subsequently evaluated against ground measurements of soil moisture. The retrieval accuracy when using the L-MEB ‘default’ set of model parameters was found to be better than 4.0 %v/v only over grassland covered sites. Over crops the model was found to underestimate soil moisture by up to 32 %v/v. After site specific calibration of the vegetation and roughness parameters, the retrieval accuracy was found to be equal or better than 4.8 %v/v for crops and grasslands at 62.5-m resolution. It is suggested that the proposed value of roughness parameter HR for crops is too low, and that variability of HR with soil moisture must be taken into consideration to obtain accurate retrievals at these scales. The analysis presented here is a crucial step towards validating the application of L-MEB for soil moisture retrieval from satellite observations in an operational context. 相似文献
3.
The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km. Uncertainty in the retrieval of soil moisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soil moisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops), with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE, −3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, −0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment 2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area equivalent in size to a SMOS pixel. 相似文献
4.
A downscaling method for the near-surface soil moisture retrieved from passive microwave sensors is applied to the PBMR data collected during the Monsoon '90 experiment. The downscaling method requires (1) the coarse resolution microwave observations, (2) the fine-scale distribution of soil temperature and (3) the fine-scale distribution of surface conditions composed of atmospheric forcing and the parameters involved in the modeling of land surface-atmosphere interactions. During the Monsoon '90 experiment, eight ground-based meteorological and flux stations were operating over the 150 km2 study area simultaneously with the acquisition of the aircraft-based L-band PBMR data. The heterogeneous scene is hence composed of eight subpixels and the microwave pixel is generated by aggregating the microwave emission of all sites. The results indicate a good agreement between the downscaled and ground-based soil moisture as long as the intensity of solar radiation is sufficiently high to use the soil temperature as a tracer of the spatial variability of near-surface soil moisture. 相似文献
5.
A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign 总被引:1,自引:0,他引:1
Clément Albergel Elena Zakharova Mehrez Zribi Mickaël Pardé Nathalie Novello Arnaud Mialon 《Remote sensing of environment》2011,115(10):2718-2728
The Soil Moisture and Ocean Salinity (SMOS) satellite mission, based on an aperture synthesis L-band radiometer was successfully launched in November 2009. In the context of a validation campaign for the SMOS mission, intensive airborne and in situ observations were performed in southwestern France for the SMOS CAL/VAL, from April to May 2009 and from April to July 2010. The CAROLS (Cooperative Airborne Radiometer for Ocean and Land Studies) bi-angular (34°-0°) and dual-polarized (V and H) L-band radiometer was designed, built and installed on board the French ATR-42 research aircraft. During springs of 2009 and 2010, soil moisture observations from the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France were complemented by airborne observations of the CAROLS L-band radiometer, following an Atlantic-Mediterranean transect in southwestern France. Additionally to the 12 stations of the SMOSMANIA soil moisture network, in situ measurements were collected in three specific sites within an area representative of a SMOS pixel. Microwave radiometer observations, acquired over southwestern France by the CAROLS instrument were analyzed in order to assess their sensitivity to surface soil moisture (wg). A combination of microwave brightness temperature (Tb) at either two polarizations or two contrasting incidence angles was used to retrieve wg through regressed empirical logarithmic equations with good results, depending on the chosen configuration. The regressions derived from the CAROLS measurements were applied to the SMOS Tb and their retrieval performance was evaluated. The retrievals of wg showed significant correlation (p-value < 0.05) with surface measurements for most of the SMOSMANIA stations (8 of 12 stations) and with additional field measurements at two specific sites, also. Root mean square errors varied from 0.03 to 0.09 m3 m− 3 (0.06 m3 m− 3 on average). 相似文献
6.
Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination 总被引:3,自引:0,他引:3
Shruti Khanna Alicia Palacios-Orueta Michael L. Whiting David Riaño 《Remote sensing of environment》2007,109(2):154-165
A new index was proposed to estimate soil and vegetation moisture based on NIR (858 nm) and SWIR (1240 and 1640 nm) MODIS bands. The Shortwave Angle Slope Index (SASI) parameterizes the general shape of the NIR-SWIR part of the spectrum. We expand on the novel approach used to develop SASI by proposing another index, the Angle at NIR (ANIR). We use laboratory and simulation datasets to validate the ability of SASI to estimate soil and vegetation moisture, and evaluate the advantage for using both SASI and ANIR as land-cover discrimination tools. Our results demonstrate that SASI is a good indicator of soil and vegetation moisture. ANIR shows promise in discriminating dry plant matter from soil and quantifying the amount of dry matter irrespective of changes in soil moisture or green vegetation. When SASI is combined with ANIR, discrimination between soil, dry plant matter, and low to high amounts of green vegetation is significantly improved. Angle indexes are an exciting new way to engineer indexes that contain valuable environmental information not accessible from other indexes. 相似文献
7.
Alexander Loew 《Remote sensing of environment》2008,112(1):231-248
Water and energy fluxes at the interface between the land surface and atmosphere are strongly depending on the surface soil moisture content which is highly variable in space and time. The sensitivity of active and passive microwave remote sensing data to surface soil moisture content has been investigated in numerous studies. Recent satellite borne mission concepts, as e.g. the SMOS mission, are dedicated to provide global soil moisture information with a temporal frequency of 1-3 days to capture it's high temporal dynamics. Passive satellite microwave sensors have spatial resolutions in the order of tens of kilometres. The retrieved soil moisture fields from that sensors therefore represent surface information which is integrated over large areas. It has been shown that the heterogeneity within an image pixel might have considerable impact on the accuracy of soil moisture retrievals from passive microwave data.The paper investigates the impact of land surface heterogeneity on soil moisture retrievals from L-band passive microwave data at different spatial scales between 1 km and 40 km. The impact of sensor noise and quality of ancillary information is explicitly considered. A synthetic study is conducted where brightness temperature observations are generated using simulated land surface conditions. Soil moisture information is retrieved from these simulated observations using an iterative approach based on multiangular observations of brightness temperature. The soil moisture retrieval uncertainties resulting from the heterogeneity within the image pixels as well as the uncertainties in the a priori knowledge of surface temperature data and due to sensor noise, is investigated at different spatial scales. The investigations are made for a heterogeneous hydrological catchment in Southern Germany (Upper Danube) which is dedicated to serve as a calibration and validation site for the SMOS mission. 相似文献
8.
Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust 总被引:1,自引:0,他引:1
Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (> 25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°).The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust. 相似文献
9.
R. Bindlish T.J. Jackson B. Stankov M.H. Cosh C. Watts V. Lakshmi T. Keefer 《Remote sensing of environment》2008,112(2):375-390
An unresolved issue in global soil moisture retrieval using passive microwave sensors is the spatial integration of heterogeneous landscape features to the nominal 50 km footprint observed by most low frequency satellite systems. One of the objectives of the Soil Moisture Experiments 2004 (SMEX04) was to address some aspects of this problem, specifically variability introduced by vegetation, topography and convective precipitation. Other goals included supporting the development of soil moisture data sets that would contribute to understanding the role of the land surface in the concurrent North American Monsoon System. SMEX04 was conducted over two regions: Arizona — semi-arid climate with sparse vegetation and moderate topography, and Sonora (Mexico) — moderate vegetation with strong topographic gradients. The Polarimetric Scanning Radiometer (PSR/CX) was flown on a Naval Research Lab P-3B aircraft as part of SMEX04 (10 dates of coverage over Arizona and 11 over Sonora). Radio Frequency Interference (RFI) was observed in both PSR and satellite-based (AMSR-E) observations at 6.92 GHz over Arizona, but no detectable RFI was observed over the Sonora domain. The PSR estimated soil moisture was in agreement with the ground-based estimates of soil moisture over both domains. The estimated error over the Sonora domain (SEE = 0.021 cm3/cm3) was higher than over the Arizona domain (SEE = 0.014 cm3/cm3). These results show the possibility of estimating soil moisture in areas of moderate and heterogeneous vegetation and high topographic variability. 相似文献
10.
Glynn C. Hulley Simon J. Hook Alice M. Baldridge 《Remote sensing of environment》2010,114(7):1480-1493
This study investigates the effects of soil moisture (SM) on thermal infrared (TIR) land surface emissivity (LSE) using field- and satellite-measurements. Laboratory measurements were used to simulate the effects of rainfall and subsequent surface evaporation on the LSE for two different sand types. The results showed that the LSE returned to the dry equilibrium state within an hour after initial wetting, and during the drying process the SM changes were uncorrelated with changes in LSE. Satellite retrievals of LSE from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) were examined for an anomalous rainfall event over the Namib Desert in Namibia during April, 2006. The results showed that increases in Advanced Microwave Scanning Radiometer (AMSR-E) derived soil moisture and Tropical Rainfall Measuring Mission (TRMM) rainfall estimates corresponded closely with LSE increases of between 0.08-0.3 at 8.6 µm and up to 0.03 at 11 µm for MODIS v4 and AIRS products. This dependence was lost in the more recent MODIS v5 product which artificially removed the correlation due to a stronger coupling with the split-window algorithm, and is lost in any algorithms that force the LSE to a pre-determined constant as in split-window type algorithms like those planned for use with the NPOESS Visible Infrared Imager Radiometer Suite (VIIRS). Good agreement was found between MODIS land surface temperatures (LSTs) derived from the Temperature Emissivity Separation (TES) and day/night v4 algorithm (MOD11B1 v4), while the split-window dependent products (MOD11B1 v5 and MOD11A1) had cooler mean temperatures on the order of 1-2 K over the Namib Desert for the month of April 2006. 相似文献
11.
ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy 总被引:2,自引:0,他引:2
Reliable measurements of soil moisture at global scale might greatly improve many practical issues in hydrology, meteorology, climatology or agriculture such as water management, quantitative precipitation forecasting, irrigation scheduling, etc. Remote sensing offers the unique capability to monitor soil moisture over large areas but, nowadays, the spatio-temporal resolution and accuracy required for some hydrological applications (e.g., flood forecasting in medium to large basins) have still to be met. The Advanced SCATterometer (ASCAT) onboard the Metop satellite (VV polarization, C-band at 5.255 GHz), based on a large extent on the heritage of the ERS scatterometer, provides a soil moisture product available at a coarse spatial resolution (25 km and 50 km) and at a nearly daily time step. This study evaluates the accuracy of the new 25 km ASCAT derived saturation degree product by using in situ observations and the outcomes of a soil water balance model for three sites located in an inland region of central Italy. The comparison is carried out for a 2-year period (2007-2008) and three products derived from ASCAT: the surface saturation degree, ms, the exponentially filtered soil wetness index, SWI, and its linear transformation, SWI*, matching the range of variability of ground data. Overall, the performance of the three products is found to be quite good with correlation coefficients higher than 0.92 and 0.80 when the SWI is compared with in situ and simulated saturation degree, respectively. Considering SWI*, the root mean square error is less than 0.035 m3/m3 and 0.042 m3/m3 for in situ and simulated saturation degree, respectively. More notably, when the ms product is compared with modeled data at 3 cm depth, this index is found able to accurately reproduce the temporal pattern of the simulated saturation degree in terms of both timing and entity of its variations also at fine temporal scale. The daily temporal resolution and the reliability obtained with the ASCAT derived saturation degree products represent the preliminary step for its effective use in operational rainfall-runoff modeling. 相似文献
12.
土壤含水量作为地表的重要参量之一,对地球能量循环、水循环、碳循环及生态环境都有十分重要的意义。以南京市金川河流域为研究区,融合哨兵 2 号 L2A 数据和 Landsat 8 遥感数据 2 种数据源,分别采用偏最小二乘法(PLSR)、最小二乘-支持向量机(LS-SVM)、反向传播神经网络(BPNN)和随机森林(RF)4 种建模方法,建立遥感数据与土壤含水量之间的关系,并进行模型的验证与评价。结果表明:1)土壤含水量与哨兵 2 号和 Landsat 8 各波段反射率均呈负相关关系,和海岸带监测波段(波长为 430~450 nm)和近红外波段(波长为 2 100~2 300 nm)相关性最佳;2)融合后的遥感数据相较于单一遥感数据源,预测土壤含水量的能力更佳, 最优模型 R2 达 0.996,均方根误差仅为 0.003 g/g;3)4 种建模方法中,建模效果从好到差依次为 PLSR,RF, LS-SVM,BPNN。融合哨兵 2 号 L2A 和 Landsat 8 数据,结合 PLSR 建模方法可进行土壤含水量的精准反演, 相较于现有研究反演精度大大提升,对研究该地区地表与地下水循环和生态环境治理有一定参考价值。 相似文献
13.
Spatial averaging schemes have often been used to improve empirical models that relate radar backscatter coefficient to soil moisture. However, reducing the noise in backscatter response not related to soil moisture often results in signal losses that are related to soil moisture. In this study we tested whether a spatial averaging scheme based on topographic features improved regressions relating backscatter coefficient and soil moisture on the low relief landscape of the Prairie Pothole Region of Canada. Soil moisture data were collected along hillslope transects within pothole drainage basins at intervals coincident with RADARSAT-1 satellite overpass. Spatial averaging schemes were designed at four scales: pixel, topographic feature (uplands, sideslopes, and lowlands), pothole drainage basin, and landscape (0.8 km × 1.6 km). The relationship between soil moisture and backscatter coefficient improved with increasing area of spatial averaging from a pixel (R2 = 0.18, P < 0.005), to the pothole drainage basin (R2 = 0.36, P < 0.005), to the landscape (R2 = 0.66, P < 0.005). However, the strongest relationship (R2 = 0.72, P < 0.005) was obtained by spatially averaging radar images based on topographic features. These findings indicate that topographically based spatial averaging of RADARSAT-1 imagery improves empirical models that are created to map the complex patterns of soil moisture in prairie pothole landscapes. 相似文献
14.
Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter 总被引:4,自引:0,他引:4
Ensemble Kalman filter is a new sequential data assimilation algorithm which was originally developed for atmospheric and oceanographic data assimilation. It can be applied to calculate error covariance matrix through Monte-Carlo simulation. This approach is able to resolve the nonlinearity and discontinuity existed within model operator and observation operator. When observation data are assimilated at each time step, error covariances are estimated from the phase-space distribution of an ensemble of model states. The error statistics is then used to calculate Kalman gain matrix and analysis increments. In this study, we develop a one-dimensional soil moisture data assimilation system based on ensemble Kalman filter, the Simple Biosphere Model (SiB2) and microwave radiation transfer model (AIEM, advanced integration equation model). We conduct numerical experiments to assimilate in situ soil surface moisture measurements and low-frequency passive microwave remote sensing data into a land surface model, respectively. The results indicate that data assimilation can significantly improve the soil surface moisture estimation. The improvement in root zone is related to the model bias errors at surface layer and root zone. The soil moisture does not vary significantly in deep layer. Additionally, the ensemble Kalman filter is predominant in dealing with the nonlinearity of model operator and observation operator. It is practical and effective for assimilating observations in situ and remotely sensed data into land surface models. 相似文献
15.
Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data 总被引:1,自引:0,他引:1
M.M. Rahman M.S. Moran R. Bryant T. Jackson M. Tischler 《Remote sensing of environment》2008,112(2):391-402
The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach. 相似文献
16.
D.P. Thoma M.S. Moran M.M. Rahman T.O. Keefer I. Osman M.A. Tischler P.J. Starks 《Remote sensing of environment》2008,112(2):403-414
This research investigates the appropriate scale for watershed averaged and site specific soil moisture retrieval from high resolution radar imagery. The first approach involved filtering backscatter for input to a retrieval model that was compared against field measures of soil moisture. The second approach involved spatially averaging raw and filtered imagery in an image-based statistical technique to determine the best scale for site-specific soil moisture retrieval. Field soil moisture was measured at 1225 m2 sites in three watersheds commensurate with 7 m resolution Radarsat image acquisition. Analysis of speckle reducing block median filters indicated that 5 × 5 filter level was the optimum for watershed averaged estimates of soil moisture. However, median filtering alone did not provide acceptable accuracy for soil moisture retrieval on a site-specific basis. Therefore, spatial averaging of unfiltered and median filtered power values was used to generate backscatter estimates with known confidence for soil moisture retrieval. This combined approach of filtering and averaging was demonstrated at watersheds located in Arizona (AZ), Oklahoma (OK) and Georgia (GA). The optimum ground resolution for AZ, OK and GA study areas was 162 m, 310 m, and 1131 m respectively obtained with unfiltered imagery. This statistical approach does not rely on ground verification of soil moisture for validation and only requires a satellite image and average roughness parameters of the site. When applied at other locations, the resulting optimum ground resolution will depend on the spatial distribution of land surface features that affect radar backscatter. This work offers insight into the accuracy of soil moisture retrieval, and an operational approach to determine the optimal spatial resolution for the required application accuracy. 相似文献
17.
针对现有的固定端传感器土壤墒情监测预测系统架设成本高、传感器易损坏、预测精度较低等问题,设计并实现了基于非固定无线传感器组网与改进灰狼算法优化神经网络的土壤墒情监测预测系统。系统使用非固定即插即用式传感器蓝牙组网收集墒情数据,使用高精度多源定位接入融合方法进行广域室外高精度定位。在算法方面,针对灰狼算法在迭代中后期易陷入局部最优等问题,提出一种基于末尾探索者策略的改进灰狼算法。首先,根据种群个体适应度值排名,在原有算法个体类型中增加探索者类型。然后,将种群搜索分为三个时期:活跃探索期、周期探索期和种群回归期。最后,在每个时期使用特有的位置更新策略进行探索者位置调整,使得算法在探索初期更具随机性,在探索中后期依然保持一定的解空间搜索能力,从而增强算法的局部最优回避能力。使用标准函数进行算法性能测试,并将该算法应用于优化土壤墒情神经网络预测模型问题,使用某市2号试验田的数据进行实验。实验结果表明,所提算法与直接神经网络预测模型相比,相对误差下降约4个百分点;与传统灰狼算法、粒子群优化(PSO)算法优化模型比较,相对误差下降约1至2个百分点。所提算法拥有更小的误差,更好的局部最优回避能力,能有效提高墒情的预测质量。 相似文献
18.
An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation 总被引:1,自引:0,他引:1
Global satellite ocean color instruments provide the scientific community a high-resolution means of studying the marine biosphere. Satellite data product validation and algorithm development activities both require the substantial accumulation of high-quality in-situ observations. The NASA Ocean Biology Processing Group maintains a local repository of in-situ marine bio-optical data, the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), to facilitate their ocean color satellite validation analyses. Data were acquired from SeaBASS and used to compile a large set of coincident radiometric observations and phytoplankton pigment concentrations for use in bio-optical algorithm development. This new data set, the NASA bio-Optical Marine Algorithm Data set (NOMAD), includes over 3400 stations of spectral water-leaving radiances, surface irradiances, and diffuse downwelling attenuation coefficients, encompassing chlorophyll a concentrations ranging from 0.012 to 72.12 mg m− 3. Metadata, such as the date, time, and location of data collection, and ancillary data, including sea surface temperatures and water depths, accompany each record. This paper describes the assembly and evaluation of NOMAD, and further illustrates the broad geophysical range of stations incorporated into NOMAD. 相似文献
19.
20.
Rahnema Nouria Gharehchopogh Farhad Soleimanian 《Multimedia Tools and Applications》2020,79(43-44):32169-32194
Multimedia Tools and Applications - Data clustering is one of the branches of unsupervised learning and it is a process whereby the samples are divided into categories whose members are similar to... 相似文献