首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
The mechanism of NH4+ transport in inner medulla is not known. The purpose of these experiments was to study the process that is involved in ammonium (NH4+) transport in cultured inner medullary collecting duct (mIMCD-3) cells. Cells grown on coverslips were exposed to NH4+ and monitored for pHi changes by the use of the pH-sensitive dye BCECF. The rate of cell acidification following the initial cell alkalinization was measured as an index of NH4+ transport. The rate of NH4+ transport was the same in the presence or absence of sodium in the media (0.052 +/- 0.003 vs 0.048 +/- 0.004 pH/min. P > 0.05), indicating that NH4+ entry into the cells was independent of sodium. The presence of ouabain, bumetanide, amiloride, barium, or 4,4'-di-isothiocyanostilbene-2-2'-disulfonic acid (DIDS) did not block the NH4(+)-induced cell acidification, indicating lack of involvement of Na+:K(+)-ATPase, Na+:K+:2Cl- transport, Na+:H+ exchange, K+ channel, or Cl-/base exchange, respectively, in NH4+ transport. The NH4(+)-induced cell acidification was significantly inhibited in the presence of high external [K+] as compared to low external [K+] (0.018 +/- 0.001 vs. 0.049 +/- 0.003 pH/min for 140 mM K+ vs. 1.8 mM K+ in the media, respectively, P < 0.001). Inducing K+ efflux by imposing an outward K+ gradient caused intracellular acidification by approximately 0.3 pH unit in the presence but not the absence of NH4+. This K+ efflux-induced NH4+ entry increased by extracellular NH4+ in a saturable manner with a Km of approximately 5 mM, blocked by increasing extracellular K+ and was not inhibited by barium. The K+ efflux-coupled NH4+ entry was electroneutral as monitored by the use of cell membrane potential probe 3,3'-dipropylthiadicarbocyanine. These results are consistent with the exchange of internal K+ with external NH4+ in a 1:1 ratio. The K(+)-NH4+ antiporter was inhibited by verapamil and Schering 28080 in a dose-dependent manner, was able to work in reverse mode, and did not show any affinity for H+ as a substrate, indicating that it is distinct from other NH4(+)-carrying transporters. We conclude that a unique transporter, a potassium-ammonium (K+/NH4+) antiport, is responsible for NH4+ transport in renal inner medullary collecting duct cells. This antiporter is sensitive to verapamil and Schering 28080, is electroneutral, and is selective for NH4+ and K+ as substrates. The K+/NH4+ antiporter may play a significant role in acid-base regulation by excretion of ammonium and elimination of acid.  相似文献   

2.
In the retina of most vertebrates there exists only one type of macroglia, the Müller cell. Müller cells express voltage-gated ion channels, neurotransmitter receptors and various uptake carrier systems. These properties enable the Müller cells to control the activity of retinal neurons by regulating the extracellular concentration of neuroactive substances such as K+, GABA and glutamate. We show here how electrophysiological recordings from enzymatically dissociated mammalian Müller cells can be used to study these mechanisms. Müller cells from various species have Na(+)-dependent GABA uptake carriers, but only cells from primates have additional GABA receptors that activate Cl- channels. Application of glutamate analogues causes enhanced membrane currents recorded from Müller cells in situ but not from isolated cells. We show that mammalian Müller cells have no ionotropic glutamate receptors but respond to increased K+ release from glutamate-stimulated retinal neurons. This response is involved in extracellular K+ clearance and is mediated by voltage-gated (inwardly rectifying) K+ channels which are abundantly expressed by healthy Müller cells. In various cases of human retinal pathology, currents through these channels are strongly reduced or even extinguished. Another type of voltage-gated ion channels, observed in Müller cells from many mammalian species, are Na+ channels. In Müller cells from diseased human retinae, voltage-dependent Na+ currents were significantly increased in comparison to cells from control donors. Thus, the expression of glial ion channels seems to be controlled by neuronal signals. This interaction may be involved in the pathogenesis of retinal gliosis which inevitably accompanies any degeneration of retinal neurons. In particular, Müller cell proliferation may be triggered by mechanisms requiring the activation of Ca(2+)-dependent K+ channels. Ca(2+)-dependent K+ currents are easily elicitable in Müller cells from degenerating retinae and can be blocked by 1 mM TEA (tetraethylammonium). In purified Müller cell cultures, the application of 1 mM TEA greatly reduces the proliferative activity of the cells. These data clearly show that Müller cells are altered in cases of neuronal degeneration and may be crucially involved in pathogenetic mechanisms of the retina.  相似文献   

3.
The nature of the K+ exit across the basolateral membrane of microperfused rabbit cortical thick ascending limbs (cTALs) was investigated using the transepithelial and transmembrane potential difference (PDte, PDbl) and conductance measurements. An increase in bath K+ concentration from 4 to 10, 25, 50 mmol/l depolarized the basolateral membrane in a concentration-dependent manner, accompanied by a decrease in the fractional resistance of the basolateral membrane (FRbl). The Cl- channel blocker, 5-nitro-2-(3-phenylpropyl-amino)-benzoic acid (NPPB), did not prevent these effects. The effect of Ba2+ on PDbl was bimodally distributed: paradoxically, in the tubules in which Ba2+ largely depolarized, the effects on PDbl of the bath K+ concentration increases were not inhibited by extracellular Ba2+, in tubules in which Ba2+ moderately depolarized, Ba2+ partially inhibited the K+ concentration increase-induced depolarization of the basolateral membrane. However, the parallel decrease in FRbl was Ba2+ insensitive, indicating that the K+ channel of the basolateral membrane was not modified by extracellular Ba2+. The Ba(2+)-induced depolarizations were prevented by furosemide suggesting that Ba2+ acts by inhibiting basolateral KCl extrusion. Finally, the K+ concentration increase-induced depolarizations were insensitive to tetraethylammonium, charybdotoxin, apamin and verapamil. In conclusion, the present study provides evidence that, in addition to a Ba(2+)-sensitive KCl cotransport system, the basolateral membrane of rabbit cTAL cells possesses a K+ conductance which is insensitive to extracellular Ba2+.  相似文献   

4.
Photoreceptors need the support of pigment epithelial (PE) and Müller glial cells in order to maintain visual sensitivity and neurotransmitter resynthesis. In rod outer segments (ROS), all-trans-retinal is transformed to all-trans-retinol by retinol dehydrogenase using NADPH. NADPH is restored in ROS by the pentose phosphate pathway utilizing high amounts of glucose supplied by choriocapillaries. The retinal formed is transported to PE cells where regeneration of 11-cis-retinal occurs. Müller cells take up and metabolize glucose predominantly to lactate which is massively released into the extracellular space (ES). Lactate is taken up by photoreceptors, where it is transformed to pyruvate which, in turn, enters the Krebs cycle in mitochondria of the inner segment. Stimulation of neurotransmitter release by darkness induces 130% rise in the amount of glutamate released into ES. Glutamate is transported into Müller cells where it is predominantly transformed to glutamine. Stimulation of photoreceptors induces an eightfold increase in glutamine formation. It appears, therefore, that there is a signaling function in the transfer of amino acids from Müller cells to photoreceptors. Work on the model-system of the honeybee retina demonstrated that photoreceptors release NH4+ and glutamate in a stimulus-dependent manner which, in turn, contribute to the biosynthesis of alanine in glia. Alanine released into the extracellular space is taken up and used by photoreceptors. Glial cells take glutamate by high-affinity transporters. This uptake induces a transient change in glial cell metabolism. The transformation of glutamate to glutamine is possibly also controlled by the uptake of NH4+ which directly affects cellular metabolism.  相似文献   

5.
Glutamate is the most prominent excitatory neurotransmitter in the retina and brain. It has become clear that the physiology of many glial cells, including retinal Müller cells, is modified by a host of neurotransmitters, including glutamate. The experiments presented here demonstrate that Müller cells isolated from the tiger salamander retina have metabotropic glutamate receptors that, when activated, lead to the release of calcium ions (Ca2+) from intracellular stores. The Ca2+-sensitive fluorescent dye, Fura-2, and video imaging microscopy were used to monitor changes in cytosolic calcium ion concentration ([Ca2+]i) evoked by glutamate (30-50 microM), (1S,3R)-ACPD (50-200 microM), quisqualate (10-50 microM), and L-AP4 (5-100 microM). Bath application of each of these metabotropic receptor agonists in the absence of extracellular Ca2+ resulted in an increase in [Ca2+]i that often began in the distal end of the cell and occurred later in the endfoot. This wavelike increase in [Ca2+]i is reminiscent of the Ca2+ waves evoked in these cells by other Ca2+ releasing agents such as ryanodine and caffeine. Extracellular application ofATP also evoked increases in [Ca2+] in Müller cells. The presence on Müller cells of receptors for retinal neurotransmitters, such as glutamate and ATP, demonstrates that these glial cells can respond to changes in the retinal extracellular environment and hence neuronal activity. Since Müller cells span almost all layers of the retina, they are likely to be exposed to most retinal neurotransmitters. The Ca2+ waves evoked in Müller cells by neurotransmitters could represent a form of signaling from the outer retinal layers to the inner ones.  相似文献   

6.
Various studies suggest the existence of a plasma membrane receptor on parathyroid cells that senses changes in the concentration of extracellular Ca2+. To test this hypothesis, Xenopus laevis oocytes were injected with poly(A)(+)-enriched mRNA from bovine parathyroid cells and examined for their ability to respond to increases in the concentration of extracellular Ca2+ or other polycations. Cytosolic Ca2+ concentrations were measured indirectly by recording Cl- currents through the endogenous, cytosolic Ca(2+)-activated Cl- channel. Increasing the concentration of extracellular Ca2+ (from 0.7 to 5 mM) or Mg2+ (from 0.8 to 10 mM) elicited oscillatory increases in the Cl- current. Responses to either divalent cation were not observed in oocytes injected with water or with mRNA prepared from HL-60 cells or rat liver. Responses elicited by extracellular Mg2+ persisted when extracellular Ca2+ was reduced to low micromolar levels. La3+, Gd3+, or neomycin B also evoked oscillatory increases in the Cl- current in oocytes under conditions of low extracellular Ca2+ levels. These extracellular polycations all cause the mobilization of intracellular Ca2+ in oocytes injected with parathyroid cell mRNA like they do in intact parathyroid cells. The injection of parathyroid cell mRNA thus confers on oocytes the ability to detect and respond to changes in the concentration of extracellular polycations. The data provide compelling evidence for the existence of a cell surface Ca2+ receptor protein(s) on parathyroid cells that regulates cellular function.  相似文献   

7.
Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl(-)-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 microM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl- was varied, a single saturation process with an average apparent equilibrium constant (K(Cl-)) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, K(Na+) approximately 54.8 mM). Analyses of the Na+- and Cl(-)-concentration dependence data suggest that at least two Na+ and one Cl- are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > beta-alanine > L-diaminopropionic acid > guanidinoethane sulfonate > beta-guanidinopropionic acid > chloroquine > gamma-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4alpha-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

8.
T cell antigen receptor signal transduction   总被引:2,自引:0,他引:2  
1. COS-7 cells transfected with the cDNA of the human dopamine transporter (DAT cells) or the human noradrenaline transporter (NAT cells) were loaded with [3H]-dopamine or [3H]-noradrenaline and superfused with buffers of different ionic composition. 2. In DAT cells lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux. Cocaine (10 microM) or mazindol (0.3 microM) blocked the efflux at low Na+, but not at 0 Na+. Lowering the Cl- concentration to 0, 5 or 10 mM resulted in an increased efflux, which was blocked by cocaine or mazindol. Desipramine (0.1 microM) was without effect in all the conditions tested. 3. In NAT cells, lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux, which was blocked by cocaine or mazindol. Desipramine produced a partial block, its action being stronger at 5 or 10 mM Na+ than at 0 mM Na+. Efflux induced by 0, 5 or 10 mM Cl- was completely blocked by all three uptake inhibitors. 4. In cross-loading experiments, 5 mM Na(+)- or 0 Cl(-)-induced efflux was much lower from [3H]-noradrenaline-loaded DAT, than NAT cells and was sensitive to mazindol, but not to desipramine. Efflux from [3H]-dopamine-loaded NAT cells elicited by 5 mM Na+ or 0 Cl- was blocked by mazindol, as well as by desipramine. 5. Thus cloned catecholamine transporters display carrier-mediated efflux of amines if challenged by lowering the extracellular Na+ or Cl-, whilst retaining their pharmacological profile. The transporters differ with regard to the ion dependence of the blockade of reverse transport by uptake inhibitors.  相似文献   

9.
The ligninolytic enzymes synthesized by Phanerochaete chrysosporium BKM-F-1767 immobilized on polyurethane foam were characterized under limiting, sufficient, and excess nutrient conditions. The fungus was grown in a nonimmersed liquid culture system under conditions close to those occurring in nature, with nitrogen concentrations ranging from 2.4 to 60 mM. This nonimmersed liquid culture system consisted of fungal mycelium immobilized on porous pieces of polyurethane foam saturated with liquid medium and highly exposed to gaseous oxygen. Lignin peroxidase (LIP) activity decreased to almost undetectable levels as the initial NH4+ levels were increased over the range from 2.4 to 14 mM and then increased with additional increases in initial NH4+ concentration. At 45 mM NH4+, LIP was overproduced, reaching levels of 800 U/liter. In addition, almost simultaneous secretion of LIP and secretion of manganese-dependent lignin peroxidase were observed on the third day of incubation. Manganese-dependent lignin peroxidase activity was maximal under nitrogen limitation conditions (2.4 mM NH4+) and then decreased to 40 to 50% of the maximal level in the presence of sufficient or excess initial NH4+ concentrations. Overproduction of LIP in the presence of a sufficient nitrogen level (24 mM NH4+) and excess nitrogen levels (45 to 60 mM NH4+) seemed to occur as a response to carbon starvation after rapid glucose depletion. The NH4+ in the extracellular fluid reappeared as soon as glucose was depleted, and an almost complete loss of CO2 was observed, suggesting that an alternative energy source was generated by self-proteolysis of cell proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Glial cells transform glucose to a fuel substrate taken up and used by neurons. In the honeybee retina, photoreceptor neurons consume both alanine supplied by glial cells and exogenous proline. Ammonium (NH4+) and glutamate, produced and released in a stimulus-dependent manner by photoreceptor neurons, contribute to the biosynthesis of alanine in glia. Here we report that NH4+ and glutamate are transported into glia and that a transient rise in the intraglial concentration of NH4+ or of glutamate causes a net increase in the level of reduced nicotinamide adenine dinucleotides [NAD(P)H]. Biochemical measurements indicate that this is attributable to activation of glycolysis in glial cells by the direct action of NH4+ and glutamate on at least two enzymatic reactions: those catalyzed by phosphofructokinase (PFK; ATP:D-fructose-6-phosphotransferase, EC2.7.1.11) and glutamate dehydrogenase (GDH; L-glutamate:NAD oxidoreductase, deaminating; EC1.4.1.3). This activation leads to an increase in the production and release of alanine by glia. This signaling, which depends on the rate of conversion of NH4+ and glutamate to alanine and alpha-ketoglutarate, respectively, in the glial cells, raises the novel possibility of a tight regulation of the nutritive function of glia.  相似文献   

11.
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.  相似文献   

12.
Arachidonic acid, which is thought to be involved in pathogenetic mechanisms of the central nervous system, has been shown previously to modulate neuronal ion channels and the glutamate uptake carrier of retinal glial (Müller) cells. We have used various configurations of the patch-clamp technique to determine the effects of arachidonic acid on the K+ currents of freshly isolated Müller glial cells from rabbit and human. Arachidonic acid reduced the peak amplitude of the transient (A-type) outward K+ currents in a dose-dependent and reversible manner, with a 50% reduction achieved by 4.1 microM arachidonic acid. The inward rectifier-mediated currents remained unchanged after arachidonic acid application. The amplitude of the Ca(2+)-activated K+ outward currents (KCa), which were blocked by 1 mM tetraethylammonium chloride and 40 nM iberiotoxin, respectively, was dose-dependently elevated by bath application of arachidonic acid. The activation curve of the KCa currents shifted towards more negative membrane potentials. Furthermore, arachidonic acid was found to suppress inwardly directed Na+ currents. In cell-attached recordings with 3 mM K+ in the bath and 130 mM K+ in the pipette, the KCa channels of rabbit Müller cells displayed a linear current-voltage relation, with a mean slope conductance of 102 pS. In excised patches, the slope conductance was 220 pS (150 mM K+i/130 mM K+o). The opening probability of the KCa channels increased during membrane depolarization and during elevation of the free Ca2+ concentration at the intracellular face of the membrane patches. Bath application of arachidonic acid caused a reversible increase of the single-channel opening probability, as well as an increase of the number of open channels. Arachidonic acid did not affect the single-channel conductance. Since arachidonic acid also stimulates the KCa channel activity in excised patches, the action of arachidonic acid is assumed to be independent of changes of the intracellular calcium concentration. Our results demonstrate that arachidonic acid exerts specific effects on distinct types of K+ channels in retinal glial, cells. In pathological cases, elevated arachidonic acid levels may contribute to prolonged Müller cell depolarizations, and to the initiation of reactive glial cell proliferation.  相似文献   

13.
We investigated the mechanism by which H2O2 mediates an increase in [Na+]i in L929 cells and the relevance of this Na+ load for H2O2-induced cell injury. [Na+]i increased early after exposure to H2O2 as monitored by fluorescence spectrophotometry of cells loaded with SBFI. The omission of Na+ from the incubation buffer significantly reduced H2O2-cytotoxicity. This protection could not be mimicked by inhibition of either the Na+/H+-antiporter, the Na+/HCO3- -cotransporter, or the Na+/K+/2Cl- -cotransporter by using Hoechst 694 (0.02 mM) or 4-acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS) (0.02 mM) or furosemide (1 mM) and bumetanide (0.5 mM). Only the blocker of the Na+/Ca2+-exchanger bepridil (0.2 mM) significantly reduced H2O2-cytotoxicity but without interfering with the increase in [Na+]i. H2O2 caused a rapid and sustained increase in [Ca2+]i, which was significantly reduced in bepridil pretreated cells and after replacing extracellular Na+ by choline. H2O2 was found to initiate a cellular uptake of unphysiological Ni2+ by using Newport Green diacetate as fluorescent dye. Our data suggest that H2O2 mediates Na+-influx across the plasma membrane rather unspecifically than through specific transporters. The protective effect of bepridil against H2O2-cytotoxicity occurs as a consequence of a reduced cellular Ca2+-uptake. We conclude that H2O2-mediated unspecific accumulation of Na+ seems to favor a Ca2+-influx into the cells, which takes place on the Na+/Ca2+-exchanger operating in reverse mode in exchange for Na+-efflux. Therefore, H2O2-induced cellular Na+ accumulation appears to play a permissive rather than a triggering role in H2O2-mediated cell injury.  相似文献   

14.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of ammonia (ammonium salts) upon human and rabbit cerebral arteries was studied in vitro. Ammonia (NH3/NH4+) caused relaxation of cerebrovascular smooth muscle which was transient and occurred irrespective of how the vessels were preconstricted (potassium-Krebs solution, noradrenaline, serotonin, prostaglandin F2 alpha). The effect was independent of ammonia-induced extracellular changes in pH. It is concluded that ammonia may contribute to the vasodilatation and increase in cerebral blood flow which occurs under certain pathophysiological conditions.  相似文献   

16.
Ca(2+)-dependent conductances have been hypothesized to play a role in the bursting pattern of electrical activity of insulin-secreting beta cells in response to high plasma glucose. A Maxi K+ channel has received the most attention, while a low-conductance Ca(2+)-activated K+ current has also been identified. We used an increasingly popular beta cell model system, the beta TC-3 cell line, and the perforated-patch technique to describe the properties of a novel Ca(2+)-dependent Cl- current [ICl(Ca)] in insulin-secreting pancreatic beta cells. The reported ICl(Ca) could be activated under physiological Ca2+ concentrations and is the first of its kind to be described in pancreatic insulin-secreting cells. We found that long depolarizing steps above -20 mV elicited an outward current which showed slow inward relaxation upon repolarization to negative membrane potentials. Both the outward currents and the inward tails showed dependence on Ca2+ influx: their current/voltage (I/V) relations followed that of the "L-like" Ca2+ current (ICa) present in these cells; they were blocked completely by the removal of external Ca2+ or application of Cd2+ at concentrations sufficient for complete block of ICa; and their magnitude increased with the depolarizing step duration. Moreover, the inward tail decayed monoexponentially with a time constant which at voltages negative to activation of ICa showed a weak linear voltage dependence, while at voltages positive to activation of ICa it followed the voltage dependence of ICa. This Ca(2+)-dependent current reversed at -21.5 mV and when the external Cl- concentration was reduced from 159 mM to 62 mM the reversal potential shifted by approximately +20 mV as predicted by the Nernst relation for a Cl(-)-selective current. Cl- channel blockers such as DIDS (100 microM) and niflumic acid (100 microM) blocked this current. We concluded that this current was a Ca(2+)-dependent Cl- current [ICl(Ca)]. From substitution of the external Cl- with various monovalent anions and from the reversal potentials we obtained the following permeability sequence for ICl(Ca): I- > NO3- > Br- > Cl- > Acetate.  相似文献   

17.
beta-Adrenergic stimulation reduces albumin permeation across pulmonary artery endothelial monolayers and induces changes in cell morphology that are mediated by Cl- flux. We tested the hypothesis that anion-mediated changes in endothelial cells result in changes in endothelial permeability. We measured permeation of radiolabeled albumin across bovine pulmonary arterial endothelial monolayers when the extracellular anion was Cl-, Br-, I-, F-, acetate (Ac-), gluconate (G-), and propionate (Pr-). Permeability to albumin (Palbumin) was calculated before and after addition of 0.2 mM of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), which reduces permeability. In Cl-, the Palbumin was 3.05 +/- 0.86 x 10(-6) cm/s and fell by 70% with the addition of IBMX. The initial Palbumin was lowest for Pr- and Ac-. Initial Palbumin was higher in Br-, I-, G-, and F- than in Cl-. A permeability ratio was calculated to examine the IBMX effect. The greatest IBMX effect was seen when Cl- was the extracellular anion, and the order among halide anions was Cl- > Br- > I- > F-. Although the level of extracellular Ca2+ concentration ([Ca2+]o) varied over a wide range in the anion solutions, [Ca2+]o did not systematically affect endothelial permeability in this system. When Cl- was the extracellular anion, varying [Ca2+]o from 0.2 to 2.8 mM caused a change in initial Palbumin but no change in the IBMX effect. The anion channel blockers 4-acetamido-4'-isothiocyanotostilbene-2, 2'-disulfonic acid (0.25 mM) and anthracene-9-carboxylic acid (0.5 mM) significantly altered initial Palbumin and the IBMX effect. The anion transport blockers bumetanide (0.2 mM) and furosemide (1 mM) had no such effects. We conclude that extracellular anions influence bovine pulmonary arterial endothelial permeability and that the pharmacological profile fits better with the activity of anion channels than with other anion transport processes.  相似文献   

18.
We have found chicken granulosa cells to be excitable. Experiments using the whole-cell patch-clamp technique showed that they had membrane resting potentials of -62 +/- 3 mV (n = 8) and generated action potentials, either in response to 10-ms depolarizing current pulses or, on occasion, spontaneously. The action potentials persisted in a Na(+)-free bath and were reversibly blocked by 4 mM Co2+. They lasted 0.9-3.0s with 64 mM Cl- in the pipette, were shortened 67 +/- 8% by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 20 microM), and lengthened to 8.7 +/- 2.2 when the Cl- equilibrium potential (Vcl) was changed from -20 mV to -2 mV by using 134 mM Cl- in the pipette. With conventional whole-cell voltage-clamp, slowly activating and inactivating currents, which reached maximum amplitude after 0.35-1.40 s, were evoked by depolarizing voltage steps. These slow currents activated between voltage steps of -60 mV and -50 mV and reached a maximum inward amplitude at about -40 mV. Changing the Cl- concentration in the pipette (VCl of -2MV or -20 mV) or bath (VCl of -2 mV or + 18 mV) shifted their reversal potential in a direction consistent with a Cl- electrode. They were inhibited by the Cl- channel antagonists 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.5 mM), NPPB (20 microM), and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 0.5 mM). The slow currents were blocked by Ca2+ deprivation, or by CO2+ (4 mM), or by replacing external Ca2+ with Ba2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Regulation of intracellular pH (pHi) was studied in cultured bovine aortic endothelial cells, an important cell system for cardiovascular research. Suspended cells were acidified by the NH4Cl prepulse technique as well as by exposure to CO2/HCO3-. Subsequent rates of pHi recovery were monitored using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(6)-carboxyfluorescein (BCECF). In HCO3(-)-free solutions, an EIPA-sensitive, Na+-dependent mechanism fully accounted for realkalinization, namely the Na+/H+ exchanger (NHE). In the presence of HCO3-, an additional acid efflux mechanism was found. This one was dependent on Na+ and intracellular Cl-, EIPA-insensitive but DIDS-sensitive, and therefore represented a Na+-dependent Cl-/HCO3- exchanger (NCBE). In summary, two acid-extruding mechanisms were identified in bovine aortic endothelial cells: NHE and NCBE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号