首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Within the ITER vacuum vessel, there are a significant number of diagnostics, measuring items such as plasma density, temperature and impurities; and providing a visible image of the ITER plasma. Since reliable diagnostic measurements are critical to the successful operation of ITER, robust structural design of the diagnostic supports, or port plugs, is also essential. The port plugs are substantial steel structures, mounted in both the equatorial and upper ports on the vacuum vessel. They not only support the diagnostics, but also provide functions of baking, cooling, and neutron shielding.Significant progress has been made in the mechanical design of the port plugs, culminating in the proposal of a new conceptual design, which uses the lid of the port plug as a structural member. This allows the port plug's mass to be more efficiently distributed, providing additional space for diagnostics, and better neutron shielding. A critical aspect of the design has been to provide a suitable interface between the lid and body of the structure which will support all of the structural loads which may be applied to the port plug. The lid also allows easy access to the diagnostic components when maintenance is required.Analyses have been carried out in support of the proposed changes. Structural analysis indicates that the wall thickness of the port plug could be reduced from 130 mm to 40 mm. Thermal analysis has demonstrated that the cooling and baking requirement for the port plug structure is less challenging than originally thought, and hence could be carried out in a simpler fashion. Neutronics analysis has led to a better understanding of the impact of different shielding materials and cavities through the contents of the port plug, and show that it may be possible to reduce the shielding thickness from 2000 mm to 1000 mm. Further electromagnetic analysis has been carried out demonstrating that modelling the effect of plasma movement will not affect the resultant loads by more than 20%, and that the originally defined port plug loads were probably conservative.  相似文献   

2.
3.
To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill these requirements, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment.The ITER port plug test facility (PPTF) provides the possibility to test upper and equatorial port plugs before installation on the machine. The port plug test facility is composed of several test stands. These test stands are first used in the domestic agencies and on the ITER Organization site to test the port plugs at the end of manufacturing. Two of these stands are installed later in the ITER hot cell facility to test the port plugs after refurbishment. The port plugs to be tested are the Ion Cyclotron (IC) heating and current drive antennas, Electron Cyclotron (EC) heating and current drive launchers, diagnostics and test blanket modules port plugs.Test stands shall be capable to perform environmental and functional tests. The test stands are composed of one vacuum tank (3.3 m in diameter, 5.6 m long) and the associated heating, vacuum and control systems. The vacuum tank shall achieve an ultimate pressure of 1 × 10?5 Pa at 100 °C containing a port plug. The heating system shall provide water at 240 °C and 4.4 MPa to heat up the port plugs. Openings are provided on the back of the vacuum tank to insert probes for the functional tests.This paper describes the tests to be performed on the port plugs and the conceptual design of the port plug test facility. The configuration of the standalone test stands and the integration in the hot cell facility are presented.  相似文献   

4.
The challenge of developing the conceptual design of the ECH Upper Launcher system for MHD control in the ITER plasmas has been tackled by team of European Associations together with the European Domestic Agency (“F4E”). The launcher system has to meet the following requirements: (a) a mm-wave system extending from the interface to the transmission line up to the target absorption zone in the plasma and performing as an intelligent antenna; (b) a structural system integrating the mm-wave system and ensuring sufficient thermal and nuclear shielding; (c) port plug remote handling and testing capability ensuring high port plug system availability. The paper describes the reference launcher design. The mm-wave system is composed of waveguide and quasi-optical sections with a front steering system. An automated feedback control system is developed as a concept based on an assimilation procedure between predicted and diagnosed absorption location. The structural system consists of the blanket shield module, the port plug frame, and the internal shield for appropriate neutron shielding towards the launcher back-end. The specific advantages of a double walled structure are discussed with respect to adequate baking, to rigidity towards launcher deflection under plasma-generated loads and to removal of thermal loads, including nuclear ones. Basic studies of remote handling (RH) to validate design development are initiated using a virtual reality simulation backed by experimental validation, for which a launcher handling test facility (LHT) is set up as a full scale experimental site allowing furthermore thermohydraulic studies with ITER blanket water parameters.  相似文献   

5.
6.
7.
Electromagnetic (EM) loads due to eddy current and halo current during plasma disruptions are evaluated for the ITER diagnostic upper port plug. To reduce strong EM loads acting on the port plug fixed to the vacuum vessel like a cantilever beam, three design options have been considered: removal of the diagnostic first wall, slitting of the diagnostic shield module and recess of the port plug. The main focus of the present study is to examine the efficacy of these options in terms of EM loads on the upper port plug. It is found that making slits is more effective than removing the first wall. It is also shown that the upper port plug needs to be recessed to reduce the EM load induced by halo current.  相似文献   

8.
ITER equatorial port cell outside the bio-shield plug is a place to allow personnel access after shutdown that accommodates various sensitive equipment and pipes. Gamma dose rate after shutdown of 1 day in the port cell should be within 10 μSv/h for occupational safety which is one order of magnitude less than that in the port interspace by the shielding of bio-shield plug. To verify the shielding property of the bio-shield plug, the distributions of gamma dose rates in port cell were studied. Based on the ITER neutronics model Alite4 which is a three-dimensional ITER tokomak neutronics model for MCNP calculations with a 40 degree extent in the toroidal direction and vertical reflecting bounded planes on both sides, the equatorial port was updated according to a conceptual CAD model using Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM). A 2-step method of gamma dose rate calculation was used for shutdown dose rates in CAD-based Multi-Functional 4D Neutronics Simulation System (VisualBUS). The result showed that gamma dose rates in the port cell were higher than the desired limit. Refinements to the bio-shield plug design were suggested to ensure that dose rates in the port cell were within the design value for maintenance access.  相似文献   

9.
MITICA (Megavolt ITER Injector Concept Advancement) is a test facility for the development of a full-size heating and current drive neutral beam injectors for the ITER Tokamak reactor. The optimized electrostatic and magnetic configuration has been defined by means of an iterative optimization involving all the physics and the engineering aspects. The acceleration grids have been designed considering optical performances and mechanical constraints related to embedded magnets, to cooling channels, to the grid stiffness and manufacturability. A combination of “local” vertical field and horizontal “long range” field has been found to be the most effective set-up for ion extraction, beam focusing and minimization and equalization of thermo-mechanical loads and minimal number of electrons exiting the accelerator.  相似文献   

10.
Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by advanced remote methods. This structure is compliant to the evolving maintenance strategy of ITER. Initial results of a Failure Mode Effects and Criticality Analysis (FMECA) and a development risk analysis for the ITER upper port plug #3, housing the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, are employed for the definition of the maintenance strategy.The CXRS upper port plug is essentially an optical system which transfers visible light from the plasma into a fiber bundle. The most critical component in this path is the first mirror (M1) whose reflectivity degrades during operation due to deposition and/or erosion dominated effects. Amongst other measures to mitigate these effects, the strategy is to allow for a replacement of this mirror. Therefore it is mounted on a retractable central tube. The main purpose of this tube is to make frequent replacements possible without hindering operation. The maintenance method in terms of time, geometry and spare part policy has a large impact on cost of the system and time usage in the hot cell.Replacement of the tube under vacuum and magnetic field seems infeasible due to the operational risk involved. The preferred solution is to have a spare tube available which is replaced in parallel with other maintenance operations on the vessel, as to avoid any interference in the hot cell with the shutdown scheduling. This avoids having to refurbish a full port plug and also allows for a more frequent replacement of M1, as we can replace the mirror anytime the vacuum vessel is vented, estimated to be once a year.  相似文献   

11.
The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak.The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port.This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.  相似文献   

12.
After approval of the preliminary design of the ITER EC H&CD Upper Launcher, ECHUL-CA, a consortium of several European research institutes, was founded to pool resources for approaching the final design. At the end of 2011 the consortium has signed a 2 years contract with F4E to go ahead with the work on the launcher. The contract deals with design work on both the port plug, forming the structural system, and the mm-wave-system, which injects the RF-power into the plasma. Within the period of this contract all components being part of the Tritium confinement, of which the closure plate, the support flange, the diamond windows and the waveguide feed-throughs are the most outstanding ones, will get the status of the final design.Important steps to be done for the structural system are the optimization of the mechanical behavior of the launcher, leading to minimum deflections of the port plug during plasma disruptions and optimum seismic resistance. To reduce the effect of halo currents it was decided to recess the first wall of 100 mm compared to the regular blanket tangent. This recess requires substantial changes of the cooling system and the thermo-hydraulic design of the launcher. Also the layout of the shielding arrangement and the integration of the mm-wave system need significant revision. Moreover manufacturing aspects and enhanced remote handling capability are taken into account.For the final design also quality aspects must be considered; thus the design is elaborated with respect to applicable codes and standards, material specifications, risk analyses and the RAMI (reliability, availability, maintainability and inspectability) analysis to guarantee maximum performance of the device.This paper outlines the present status of the structural system of the EC H&CD upper launcher and represents the most recent steps towards its final design.  相似文献   

13.
《Fusion Engineering and Design》2014,89(7-8):1362-1369
The Indian Lead–Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) is the Indian DEMO relevant blanket module, as a part of the TBM program in ITER. The LLCB TBM will be tested from the first phase of ITER operation in one-half of an ITER port no. 2. LLCB TBM-set consists of LLCB TBM module and shield block, which are attached with the help of attachment systems. This LLCB TBM set is inserted in a water-cooled stainless steel frame called ‘TBM frame’, which also provides the separation between the neighboring TBM-sets (Chinese TBM set) in port no. 2. In LLCB TBM, high-pressure helium gas is used to cool the first wall (FW) structure and lead–lithium eutectic (Pb–Li) flowing separately around the ceramic breeder (CB) pebble bed to cool the TBM internals which are heated due to the volumetric neutron heating during plasma operation. Low-pressure helium is purged inside the CB zones to extract the bred tritium. Thermal-structural analyses have been performed independently on LLCB TBM and shield block for TBM set using ANSYS. This paper will also describe the performance analysis of individual components of LLCB TBM set and their different configurations to optimize their performances.  相似文献   

14.
The radial x-ray camera(RXC) is designed to measure the poloidal profile of plasma x-ray emission with high spatial and temporal resolution. The RXC diagnostic system consists of internal camera module and external camera module that view the core region and outer region through the vertical slots of the diagnostic first wall and diagnostics shield module of the equatorial port plug. To ensure the normal performance of the silicon photodiode array detectors of the cameras in the hard neutron irradiation environment in ITER tokamak, it is necessary to calculate neutron flux, radiation damage and the nuclear heating of the silicon photodiode array detectors and simulate the radiation maps of the range of RXC. This work estimated the nuclear environment of RXC based on Monte Carlo N-particle transport code, plasma scenarios of ITER tokamak and the RXC-integrated ITER CLITE model. The neutron flux of silicon photodiode array detectors and the lifetime of the silicon photodiode detector in the camera were calculated. The neutronic analysis results show that the shielding design has achieved the effect as expected and is able to guarantee the normal work of the detector during the ITER deuterium–deuterium phase without replacement, three detectors of the external camera can be operated during the whole deuterium–tritium phase without replacement.  相似文献   

15.
ITER (Latin for “the way”), the largest fusion experimental reactor in the world, is designed to demonstrate the technological feasibility of nuclear fusion energy conversion, at plant scale, from high temperature deuterium-tritium plasma using the Tokamak magnetic confinement arrangement.ITER will have a large vacuum vessel that hosts the plasma facing components. These components include the blanket and the divertor that will operate at temperatures, heat loads, and neutron flux higher than those reached in a nuclear fission power plant reactor.One of the main critical issues of the ITER reactor is the design of the cooling water system to transfer the heat generated in the plasma to the in-vessel components and the heat loads from the auxiliary systems to the environment.This paper describes the current ITER cooling water system and recent design modifications and optimizations.  相似文献   

16.
在国际热核聚变实验堆(ITER)中,窗口生物屏蔽插件需为电子设备和工作人员提供必要的辐射屏蔽防护。基于中子学分析的生物屏蔽插件设计是ITER设计的重要内容。本文基于超级蒙卡核模拟软件SuperMC,在ITER大厅三维中子学模型中整合了ITER设计整合部门(DIN)最新设计的下窗口生物屏蔽插件模型,对四种下窗口生物屏蔽插件进行了屏蔽分析。分析结果显示,低温恒温器低温泵生物屏蔽插件中子屏蔽性能最好,室内监视系统生物屏蔽插件屏蔽性能最差;室内检视系统生物屏蔽插件停堆剂量率最小,环形低温泵生物屏蔽插件停堆剂量率最大。在SA2辐照方案下,停堆12天后,环形低温泵生物屏蔽插件处停堆剂量率超过规定限值20倍。分析结果表明,ITER下窗口生物屏蔽插件设计有待优化。  相似文献   

17.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

18.
《Fusion Engineering and Design》2014,89(9-10):2257-2261
The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned.  相似文献   

19.
The USITER, through the Princeton Plasma Physics Lab (PPPL), is responsible for the delivery of several fully integrated upper, equatorial and lower port plugs dedicated for the diagnostics in ITER. Each port plug package consists of a generic port plug structure and a set of diagnostics and diagnostic housings. The shielding design of the integrated port plugs calls for maintaining a dose level not to exceed 100 μSv/h inside the interspace of each port; the room behind the port plug where maintenance personnel access the rear of the port. This is set as an upper target design in order to perform routine maintenance 1E6 sec (~two weeks) following shutdown. Expensive remote handling robots and tooling are required otherwise. In this paper we present results from a parametric study aimed at providing initial assessment of the attainable dose rates in the diagnostics ports and their extension areas in order to properly address the duration time and frequency for the workers to perform the scheduled maintenance. The nuclear analysis is performed using both the serial version and the distributed memory parallel (DMP) version of the ATTILA-7.1.0, 3-D FEM Discrete Ordinates code, along with the FENDL2.1/FORNAX and ANSI/ANS-6.1.1-1977 data bases.  相似文献   

20.
Diagnostics in ITER are mandatory to characterize the parameters of plasma and study its interactions with plasma-facing components. Diagnostics components in the vicinity of the plasma are supported by metallic structures called port plugs. At the tokamak mid-plane, these components are installed in port plugs through intermediate structures called drawers. Apart from hosting the diagnostics, the port plugs act as shielding against neutrons and gammas, in order to limit the nuclear loads in crucial components (such as diagnostics and superconducting coils) as well as the dose levels in the controlled zones of the tokamak. The radiation shielding function of the port plugs is ensured through an optimized mixture of heavy metallic materials and water, forming shielding blocks surrounding the diagnostics and called Diagnostic Shield Modules (DSMs). These DSMs constitute the rear part of the drawers (the front part being composed of the Diagnostic First Wall). This paper presents the main results of a study performed in Europe on the integration of a particular diagnostics port plug, the Equatorial Port Plug 1 (EPP1). The paper first provides the results of the EPP1 diagnostics integration analysis. In a second step it focuses on the design of the EPP1 DSMs and summarizes the major results of a thorough set of analyses aiming at studying the DSMs behaviour under different loads, suggesting recommendations to improve their current design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号