首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyunghoon Kim 《Thin solid films》2010,518(22):6348-6351
We deposited Ni (15 nm)/Au (30 nm) layers on a-InGaZnO in order to produce low-resistance ohmic contacts by using a dc sputtering method. The samples were annealed at various temperatures for 5 min in Ar ambient. The electrical and the structural properties of the Ni/Au contact to a-InGaZnO were investigated. According to the current-voltage measurements, both the as-deposited and low-temperature annealed samples showed an ohmic behavior. The specific contact resistance of the as-deposited sample was 4.1 × 10− 5 Ω cm2, which was the lowest value. Further increasing the temperature above 400 °C led to an increase in the specific contact resistance. This is due to the chemical intermixing and formation of the oxide in the contact interface caused by the post-growth thermal annealing.  相似文献   

2.
The present work aims at studying electrical relaxations in silver–polyaniline nanocomposites using dielectric spectroscopy. The nanocomposites of dodecylbenzenesulfonic acid-doped polyaniline (PANI) with different concentrations of silver nanoparticles (~6–12 nm) are synthesized by simple wet-chemical route. The temperature dependence of dc conductivity in all the samples follows three-dimensional variable range-hopping conduction mechanism. The loss factor, after having subtracted the dc contribution, shows a relaxation peak which simultaneously attributes to the frequency dispersion in conductivity spectra. The observed dielectric relaxation is well fitted by the Havriliak–Negami function, and the fitting parameters are determined. The temperature dependence of characteristic relaxation frequency and dc conductivity is in line with each other and bear a resemblance to the origin of dc transport and dielectric relaxation in these systems. The temperature behavior of the relaxation strength confirms that an exclusive hopping conduction of polarons in the disordered PANI matrix can be considered as the origin of the observed electrical properties of the systems. Further, the self-similar behavior of the real part of normalized ac conductivity, within the measured temperature range, also confirms the above inferences. The variation of frequency exponent with temperature suggests that ac conduction is due to the correlated barrier hopping of polarons which strongly affected by the dispersion of silver nanoparticles within the PANI matrix.  相似文献   

3.
Sandwich structures of TiON/Au/TiON (TAT) films were deposited on glass substrates via RF magnetron sputtering of TiON and DC magnetron sputtering of Au. The optoelectronic properties of the films were strongly influenced by the Au intermediate layer. The Au insert caused a deteriorated optical transmittance, while electrical conductivity was improved with an increased carrier density. The intermediate Au film was crystallized in TAT films, but this may not have affected the crystallinity of the TiON films.In this study, new transparent and conducting TAT films with a sheet resistance of 29 Ω/□ and 78% of optical transmittance at 550 nm wavelength were obtained without intentional substrate heating.  相似文献   

4.
In this paper, the optimization of ohmic contacts for semiconductor lasers based on InGaAs/GaAs/GaAlAs layers is reported. Transmission electron microscopy (TEM) and electrical methods were used to study extensively the Pt/Ti/Pt/Au metallization system. The contact fabrication technology was optimized towards achieving the lowest electrical resistance. The technological control and optimization concerned the contact annealing temperature and thickness of metallic layers that form the contact. The average specific contact resistance was below 5×10−6 Ω cm2 (with the record value of 8×10−7 Ω cm2) for the 10 nm Pt/20 nm Ti/30 nm Pt/150 nm Au system. The presented system was used in fabrication of continuous wave (CW) operated laser diodes. The chips mounted on passively cooled copper block achieved optical powers over 1 W, threshold current density values of 140-160 A/cm2 and differential efficiencies above 1 W/A. The value of the characteristic temperature T0 for discussed lasers varied in the range of 180-200 K.  相似文献   

5.
In this study, electrical conductivity, photoconductivity, absorbance and thermal properties of polyaniline (PANI) and polyaniline–pumice composites were investigated. Temperature dependent conductivity and photoconductivity measurements were carried out in the temperature range of 80–400 K. The measurements revealed that the dominant conduction mechanisms in polyaniline and 15% pumice doped composite were hopping conduction. The low activation energies calculated for 36% pumice doped composite indicated that this sample has highly defective and degenerate structure due to the high pumice content. Polyaniline and pumice doped composites showed semiconductor behavior with the exponential variation of inverse temperature dependence of electrical conductivity. Photoconductivities of the PANI and PANI–pumice composites under various illumination intensities were studied and it was found for all samples that the conductivity increased with increasing temperature and light intensity, but decreased with increasing pumice content in the structure. Absorbance spectrum has been determined in the wavelength range of 300–700 nm and it was found that the band gap values decreased as the pumice content was increased. Thermogravimetric analysis have shown for all samples that the mass loss has started above around 300 K due to the loss of moisture from the structures. As a result of this work, it was found that polyaniline and polyaniline–pumice composites had low resistivity and high band gaps and could be used as a window layer semiconductor in heterojunction solar cell applications.  相似文献   

6.
In the present work, thin film of polyvinyl alcohol (PVA) is fabricated on n-type InP substrate as an interfacial layer for electronic modification of Au/n-InP Schottky contact. The electrical characteristics of Au/PVA/n-InP Schottky diode are determined at annealing temperature in the range of 100-300 °C by current-voltage (I-V) and capacitance-voltage (C-V) methods. The Schottky barrier height and ideality factor (n) values of the as-deposited Au/PVA/n-InP diode are obtained at room temperature as 0.66 eV (I-V), 0.82 eV (C-V) and 1.32, respectively. Upon annealing at 200 °C in nitrogen atmosphere for 1 min, the barrier height value increases to 0.81 eV (I-V), 0.99 eV (C-V) and ideality factor decreases to 1.18. When the contact is annealed at 300 °C, the barrier height value decreases to 0.77 eV (I-V), 0.96 eV (C-V) and ideality factor increases to 1.22. It is observed that the interfacial layer of PVA increases the barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. The discrepancy between Schottky barrier heights calculated from I-V and C-V measurements is also explained. Further, Cheung's functions are used to extract the series resistance of Au/PVA/n-InP Schottky diode. The interface state density as determined by Terman's method is found to be 1.04 × 1012 and 0.59 × 1012 cm− 2 eV− 1 for the as-deposited and 200 °C annealed Au/PVA/n-InP Schottky diodes. Finally, it is seen that the Schottky diode parameters changed with increase in the annealing temperature.  相似文献   

7.
The influence of layer-by-layer films of polyaniline and Ni-tetrasulfonated phthalocyanine (PANI/Ni-TS-Pc) on the electrical performance of polymeric light-emitting diodes (PLED) made from (poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene]) (MEH-PPV) is investigated by using current versus voltage measurements and impedance spectroscopy. The PLED is composed by a thin layer of MEH-PPV sandwiched between indium tin oxide (ITO) and aluminum electrodes, resulting in the device structure ITO/(PANI/Ni-TS-Pc)n/MEH-PPV/Al, where n stands for the number of PANI/Ni-TS-Pc bilayers. The deposition of PANI/Ni-TS-Pc leads to a decrease in the driving voltage of the PLEDs, which reaches a minimum when n = 5 bilayers. In addition, impedance spectroscopy data reveal that the PLED impedance decreases as more PANI/Ni-TS-Pc bilayers are deposited. The PLED structure is further described by an equivalent circuit composed by two R-C combinations, one for the bulk and other for the interface components, in series with a resistance originated in the ITO contact. From the impedance curves, the values for each circuit element is determined and it is found that both, bulk and interface resistances are decreased upon PANI/Ni-TS-Pc deposition. The results indicate that PANI/Ni-TS-Pc films reduce the contact resistance at ITO/MEH-PPV interface, and for that reason improve the hole-injection within the PLED structure.  相似文献   

8.
The electrical behaviour of commercial BaTiO3-based positive-temperature-coefficient (PTC) thermistors with NiCr/Ag electrodes was investigated by impedance analysis in the frequency domain. The contact resistance and thus the total resistance of the PTC increases with decreasing thickness as well as with decreasing area of the NiCr layer at constant Ag top layer. The increase in the total resistance in both cases is explained by the increase in the contact area of the Ag layer to the ceramic which is represented by a model. The Ag forms a blocking contact to the ceramic in contrast to the NiCr which shows an ohmic behaviour. Using our model, the electrode impedance contribution of very thin NiCr layers can be interpreted in terms of incomplete wetting of the ceramic surface by the NiCr metal during the deposition. Supplementary scanning electron microscopy and high-resolution transmission electron microscopy analyses have been used to study the structure of the electrode interface and the structure of the layers. © 1998 Kluwer Academic Publishers  相似文献   

9.
Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H2SO4 aqueous electrolyte. The highest specific capacitance of 571 Fg−1 was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.  相似文献   

10.
B. Boyarbay  A. Uygun 《Thin solid films》2010,518(8):2216-2221
Au/PANI/p-Si/Al and Au/PANI TiO2 TTAB/p-Si/Al heterojunctions have been fabricated by spin coating of soluble polyaniline (PANI) and PANI titanium dioxide (TiO2) tetradecyltrimethylammonium bromide (TTAB) on the chemically cleaned p-Si substrates. The thicknesses of the polymeric films have been determined by a profilometer. The current-voltage (I-V) characteristics of the heterojunctions have been obtained in the temperature range of 98-258 K. These devices have showed the rectifying behavior such as diode. The I-V characteristics of the devices have been analyzed on the basis of the standard thermionic emission theory at low forward bias voltage regime. It has been shown that the values of ideality factor decrease while the values of barrier height increase with increasing temperature. This temperature dependence has been attributed to the presence of barrier inhomogeneities at the organic/inorganic semiconductor interface. Furthermore, analysis of the double logarithmic I-V plots at higher forward bias voltages at all temperatures indicates that transport through the organic thin film is explained by a space-charge-limited current process characterized by exponential distribution of traps within the band gap of the organic film. The total concentration of traps has been found to be 3.52 × 1014 cm− 3 and 3.14 × 1015 cm− 3 for PANI and PANI TiO2 TTAB layer, respectively.  相似文献   

11.
Electrically conductive polyaniline/sulfonated poly(arylene ether sulfone) (PANI/BPS-35) composites were prepared. The influence of humidity and temperature on electrical conductivity of 20 wt% polyaniline containing composite films was tested. The conductivity increment from 17 mS/cm to 44 mS/cm was observed when the temperature increased from 24 °C to 80 °C at 50% relative humidity (RH). The maximum conductivity was 53 mS/cm at 80 °C and 70% RH. Aluminum (Al) and gold (Au) contacts were deposited onto PANI/BPS composite films and their contact properties have been investigated. While Al contacts behave like Schottky type contact, Au contacts showed nearly ohmic characterization. Scanning electron microscopy technology was used to investigate the morphology of PANI/BPS-35 composite films.  相似文献   

12.
Transparent conductors based on Au films, with thicknesses in the 2.6 < d < 9.8 nm range, were made by DC magnetron sputtering onto glass. The films went from an “island” structure at low thicknesses to a uniform structure at d > 8 nm, as seen from electron microscopy, electrical resistance, and spectrophotometric transmittance and reflectance. Optical data for uniform films were given a consistent interpretation within the Drude model. Optimized TiO2/Au/TiO2 films, with a luminous transmittance of 80%, were found to have good electrochemical durability and may be useful for applications in electrochromic devices.  相似文献   

13.
Considerable research has been done on the tribological properties of cosputtered metal/MoS2 solid lubricant films with low metal content (< 20 at.%) because of their usefulness in applications at high Hertzian contact stress (around 1 GPa). However, cosputtered Au-MoS2 coatings with a much higher range of metal contents up to (95 at.%) have shown surprisingly good performance at low contact stresses (as low as 0.1 MPa). In the present study, transmission electron microscopy, X-ray diffraction and electrical resistance measurements of cosputtered Au-MoS2 coatings reveal them to be composites of nanocrystalline Au particles within an amorphous MoS2 matrix. Electrical conductivity images of the coatings displayed metallic (Au) and semi-conducting (MoS2) domains of nanometer dimensions. Auger Nanoprobe analyses confirmed that sliding on the coatings causes the formation of a pure MoS2 layer about a nanometer thick on top of the bulk of the coatings. Lattice resolution atomic force microscopy revealed that this nanometer-thick MoS2 layer is crystalline, and oriented with the basal plane (0001) parallel to the coating surface. Electrical resistance obtained during sliding and pull-off force measurements was consistent with the structure of the coatings. Sliding friction data on the coatings support previous results showing that performance at different Hertzian contact stresses correlated strongly with Au content.  相似文献   

14.
The oxidation behavior of CrN/AlN superlattice films with different bilayer periods (Λ), Al/(Cr + Al) ratios, and crystal structures of the AlN layer was investigated. The films were deposited using a pulsed dc closed field unbalanced magnetron sputtering system. The oxidation tests were carried out in the ambient air at elevated temperatures from 700 to 1100 °C for 1 h. The changes in the crystal phase, microstructure and hardness of the films after the oxidation tests were characterized using X-ray diffraction, scanning electron microscopy and nanoindentation, respectively. When both CrN and AlN layers were in the NaCl cubic structure, the film with Λ = 3.8 nm and an Al/(Cr + Al) ratio of 0.6 exhibited a superior oxidation resistance than the film with Λ = 12.4 nm and an Al/(Cr + Al) ratio of 0.19. The film with Λ = 3.8 nm maintained the nanolayered structure with an oxidation temperature up to 1000 °C by the protection of a thin and dense X-ray amorphous oxide layer. In contrast, when the AlN layers were in the Wurzite hexagonal structure, the film with Λ = 22.5 nm and an Al/(Cr + Al) ratio of 0.67 exhibited poor oxidation resistance. The film lost the superlattice structure at 800 °C and was completely oxidized at 1000 °C due to the formation of a porous crystalline oxide layer on the surface.  相似文献   

15.
Polyaniline (PANI) nanostructures with an average diameter of 30-35 nm and a conductivity of 2.13-1.15 × 10− 1 S/cm were prepared using sodium dodecylsulfate (SDS) emulsion in the absence of any added acid. Fiber like nanostructures was observed after 1 and 2 h, whereas an aggregated particulate morphology was observed for 4 and 24 h. The effect of the reaction time on the PANI morphology was monitored using field-emission scanning electron microscopy (FESEM). Furthermore, the effects of the reaction time on the chemical structure, conductivity and crystallinity of PANI are reported.  相似文献   

16.
Y.S. Kim 《Vacuum》2008,82(6):574-578
Transparent and conducting tin-doped indium oxide (ITO) and ITO/Au multilayered films were prepared on polycarbonate (PC) substrates by magnetron sputtering without intentional substrate heating. In order to consider the influence of the Au thickness on the optoelectrical properties and structure of ITO/Au films, the thickness of the Au underlayer was varied from 5 to 20 nm. The optoelectrical properties of the films were quite dependent on the Au film thickness. The lowest sheet resistance of 11 Ω/sq. and an optical transmittance of 61% with respect to air was obtained from ITO (95 nm)/Au (5 nm) films. Thin film crystallinity was also affected by the presence of the Au underlayer and varied with the thickness of the Au films. In X-ray diffraction (XRD) spectra, ITO films did not show any characteristic diffraction peak, while ITO/Au films with a 5-nm Au underlayer showed a characteristic diffraction peak. From the figure of merit, it can be concluded that the most effective Au thickness in ITO/Au films is 5 nm.  相似文献   

17.
In this letter, we demonstrated that the reaction temperature plays an important role in controlling the polyaniline(PANI) nanostructures formation during an interfacial polymerization using 5-Sulfosalicylic acid(SSA) as dopant. PANI nanofibers was observed at 17 °C, whereas nanoparticulates and aggregations morphology were observed at 8 °C and 0 °C. The effect of the reaction temperature on the PANI morphology was monitored using field-emission scanning electronmicroscopy (FESEM). Furthermore, the effects of the reaction temperature on the chemical structure, conductivity, crystallinity and thermal stability of PANI are studied.  相似文献   

18.
Polyaniline (PANI) is an important conducting polymer and has drawn much attention for its inexpensiveness and chemical stability in the conducting state but its conductivity is rather low. Another well-known conducting polymer is polypyrrole (PPy) with a much higher electrical conductivity but it is hard to prepare films using PPy alone due to its poor film-forming ability. In this work, novel polypyrrole-nanotube (PPy-NT)/polyaniline (PANI) composite films are prepared via a facile solvent-evaporation method. The influence of the PPy-NT content is examined on the film structure, morphology, electrical and mechanical properties. It is shown that PPy nanotubes (PPy-NTs) are uniformly distributed in the PANI matrix. The electrical conductivity is greatly enhanced by 10.2 times by the addition of 10 wt.% PPy nanotubes. Moreover, the mechanical ductility is significantly increased by the addition of PPy nanotubes.  相似文献   

19.
The effects of the annealing of 20BaO–30V2O5–50Bi2O3 glass on the structural and electrical properties were studied by scanning electron micrographs (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) density (d) and dc conductivity (σ). The XRD and SEM observations have shown that the sample under study undergoes structural changes: from amorphous at the beginning, to partly crystalline after nanocrystallization at crystallization temperature (Tc) for 1 h and to colossal crystallization after the annealing at the same temperature for 24 h. The average size of these grains after nanocrystallization at Tc for 1 h was estimated to be about 25–35 nm. However, the glass heat treated at Tc = 580 °C for 24 h the microstructure changes considerably. The nanomaterials obtained by nanocrystallization at Tc for 1 h exhibit giant improvement of electrical conductivity up to four order of magnitude and better thermal stability than the as-received glass. The major role in the conductivity enhancement of this nanomaterial is played by the developed interfacial regions “conduction tissue” between crystalline and amorphous phases, in which the concentration of V4+–V5+ pairs responsible for electron hopping is higher than inside the glassy matrix. The annealing at Tc for 24 h leads to decrease of the electronic conductivity. This phenomena lead to disappearance of the abovementioned “conduction tissue” for electrons and substantial reduction of electronic conductivity. The high temperature (above θ/2) dependence of conductivity could be qualitatively explained by the small polaron hopping (SPH) model. The physical parameters obtained from the best fits of this model are found reasonable and consistent with the glass compositions.  相似文献   

20.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号