首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesoporous aluminosilicates, Al-MCM-41 (Si/Al = 20 and 50), efficiently catalyzed Mukaiyama aldol reaction of benzaldehyde with 1-(trimethylsiloxy)cyclohexene in CH2Cl2 at 0 °C to afford the corresponding β-trimethylsiloxy ketone in quantitative yield. On the other hand, mesoporous silica (MCM-41), amorphous SiO2–Al2O3, and H–Y and H-ZSM-5 zeolites barely catalyzed the reaction. Additionally, the less ordered Al-MCM-41 prepared by mechanical compression exhibited much lower catalytic activity compared with Al-MCM-41, indicating that the presence of the ordered mesoporous structure in aluminosilicates is crucial for the catalysis. The Al-MCM-41 catalyzed Mukaiyama aldol reaction was applicable to a wide range of aldehydes and silyl enol ethers. Furthermore, the Al-MCM-41 catalyst could be recycled at least three times without any loss in the yield. Thus, mesoporous aluminosilicates are promising heterogeneous catalysts for fine chemicals synthesis.  相似文献   

2.
《Catalysis communications》2010,11(15):1990-1994
Mesoporous aluminosilicates, Al-MCM-41 (Si/Al = 20 and 50), efficiently catalyzed Mukaiyama aldol reaction of benzaldehyde with 1-(trimethylsiloxy)cyclohexene in CH2Cl2 at 0 °C to afford the corresponding β-trimethylsiloxy ketone in quantitative yield. On the other hand, mesoporous silica (MCM-41), amorphous SiO2–Al2O3, and H–Y and H-ZSM-5 zeolites barely catalyzed the reaction. Additionally, the less ordered Al-MCM-41 prepared by mechanical compression exhibited much lower catalytic activity compared with Al-MCM-41, indicating that the presence of the ordered mesoporous structure in aluminosilicates is crucial for the catalysis. The Al-MCM-41 catalyzed Mukaiyama aldol reaction was applicable to a wide range of aldehydes and silyl enol ethers. Furthermore, the Al-MCM-41 catalyst could be recycled at least three times without any loss in the yield. Thus, mesoporous aluminosilicates are promising heterogeneous catalysts for fine chemicals synthesis.  相似文献   

3.
Biodiesel has been obtained by esterification of palmitic acid with methanol, ethanol and isopropanol in the presence of Al-MCM-41 mesoporous molecular sieves with Si/Al ratios of 8, 16 and 32. The catalytic acids were synthesized at room temperature and characterized by atomic absorption spectrometry (AAS), thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen absorption (BET/BJH), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The reaction was carried out at 130 °C whilst stirring at 500 rpm, with an alcohol/acid molar ratio of 60 and 0.6 wt% catalyst for 2 h. The alcohol reactivity follows the order methanol > ethanol > isopropanol. The catalyst Al-MCM-41 with ratio Si/Al = 8 produced the largest conversion values for the alcohols studied. The data followed a rather satisfactory approximation to first-order kinetics.  相似文献   

4.

Abstract  

A novel micro-micro/mesoporous silicoaluminophosphate ZSM-5-SAPO-5/MCM-41 (define as MZS-5) composite material with regular spherical morphology was synthesized through a novel process of the self-assembly of CTAB surfactant micelles with silica-alumina source which originated from the alkaline treatment of ZSM-5 zeolite. The physical properties of the MZS-5 composite material were characterized by XRD, FT-IR, Nitrogen adsorption–desorption, SEM and Py-FTIR techniques. Catalytic tests showed that the MZS-5 composite catalyst exhibited higher catalytic activity compared with the conventional microporous ZSM-5, SAPO-5 zeolite and mesoporous Al-MCM-41 molecular sieve for catalytic cracking of 1,3,5-triisopropylbenzene (TIPB). The remarkable catalytic reactivity of TIPB molecules was mainly attributed to the presence of the hierarchical zeolite structure. In the MZS-5 structure, the mesopores provided pathways for transportation of larger molecules and the microporous ZSM-5 and SAPO-5 zeolite provided acidic sites for catalytic activity.  相似文献   

5.
Hydrothermal method was followed to synthesis the mesoporous Al-MCM-41 (Si/Al = 25, 50, 75 and 100) and Si-MCM-41 molecular sieves using a cetyltrimethylammonium bromide as a surfactant and the materials were unambiguously characterized by XRD, N2 sorption studies, 27Al MAS-NMR and TEM. The removal of oxalic acid from aqueous solution was studied through an adsorption process because oxalic acid may cause complexes with radioactive cations during decontamination operation in nuclear industry, which resulting in interferences in their removal by conventional treatment. Adsorption of oxalic acid over Al-MCM-41 shows the applicability of Langmuir isotherm and follows first order kinetics. The effects of parameters such as contact time, concentration of oxalic acid, adsorbents (various Si/Al ratios of Al-MCM-41, Si-MCM-41 and activated charcoal) and pH have been investigated to yield higher removal of oxalic acid. The percentage of oxalic acid adsorbed per unit gram of adsorbent for Al-MCM-41 at Si/Al = 100, 75, 50 and 25, Si-MCM-41, and activated charcoal are 34.6, 40.9, 51.4, 61.3, 16.1 and 60, respectively. Retainment of crystallinity and absence of structural collapse of Al-MCM-41 after desorption and adsorption of oxalic acid, respectively has been achieved in this study.  相似文献   

6.
Fe/Al-MCM-41 (Si/Al = 25, 50, 75 and 100) were synthesized. Their catalytic activity was evaluated towards benzylation of benzene with benzyl chloride in liquid phase. The catalytic activity of Fe/Al-MCM-41(25) was higher than the other catalysts. Diphenylmethane(DPM) was obtained as the major product with 100% selectivity and with 100% conversion of benzyl chloride under optimum condition. The effect of temperature and the feed ratio, on the activity of Fe/Al-MCM-41(25) and selectivity towards DPM was studied and a possible reaction mechanism was proposed.  相似文献   

7.
Summary  In this work, different mesoporous materials were employed for the preparation of supported metallocene catalysts to be evaluated in ethylene polymerization and their performance was related to the chemistry of the materials surface used as support. The supports employed were MCM-41, SBA-15 and mesoporous TiO2. The performance of the prepared catalysts was compared with the homogeneous catalyst precursor system. Those mesoporous materials, as well as the prepared metallocene catalysts, were analyzed by infrared absorption spectrometry (FTIR). Polymers were also characterized by FTIR, for the determination of the number-average molecular weight, and by differential scanning calorimetry (DSC) to determine thermal characteristics of the produced polyethylene. Among the studied metallocene supported catalysts, the one based on the mesoporous support SBA-15 achieved the highest activities, almost as high as that observed for the homogeneous system.  相似文献   

8.
The potential application of Al-incorporated mesoporous SiO2 (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K3[Fe(CN)6] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L−1 HClO4 and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.  相似文献   

9.
Al-MSU-S mesoporous molecular sieve catalysts with Al contents ranging from 2.5 to 50 mol% have been prepared from “zeolite seed” solutions and C16 TMABr templates. Hexagonal mesoporous structures are formed that exhibit significantly higher amounts of tetrahedrally coordinated Al than analogous Al-MCM-41 catalysts. The Al-MSU-S catalysts also possess smaller pores than corresponding Al-MCM-41 materials. Catalytic cumene cracking activity is very high over the low Al content materials (2.5 mol%), approaching that of zeolite ZSM-5, but the catalytic activity decreases with increasing Al. As the Al content is increased, the Al atoms remain tetrahedrally coordinated but become less accessible to the cumene reagent. This and knowledge of zeolite synthesis suggest the formation of zeolite seeds other than the large pore LZY, such as the small pore LTA structure.  相似文献   

10.
A Beta/MCM-41 composite has been synthesized with a new method by using well-crystallized zeolite Beta as silica and aluminum source. The prepared composite was characterized by XRD, FTIR, N2 adsorption/desorption at 77 K, FE-SEM, DTG, 29Si MAS NMR spectral techniques. It was shown that the composite consisted of a highly ordered mesoporous MCM-41 phase and a zeolite Beta phase. Its hexagonal mesoporous structure was still retained after statically treated for 120 h in boiling water. In contrast, the structure of generally synthesized Al-MCM-41 nearly completely collapsed. This might be attributed to the assembly of the dissolved fragments such as the first and/or secondary structural units of zeolite Beta into the mesoporous structure around surfactant micelles. This is supported by the catalytic result that the prepared composite showed higher activity and selectivity for medium fraction in hydrocracking of Daqing vacuum residue than the parent zeolite Beta, the Al-MCM-41 as well as the mechanical mixture of these two materials.  相似文献   

11.
Nano-ZSM-5/SBA-15 analog composites (ZSC) were prepared in a two-step process from ZSM-5 precursors with different Si/Al molar ratios (10–50) via high-temperature synthesis in mildly acidic media (200 °C, pH 3.5) aiming to evaluate the influence of the initial Si/Al ratio on their structural, acidic and catalytic properties. The resulting materials were characterized by SAXS, XRD, FTIR, TEM, N2 sorption, 27Al solid state-NMR, NH3-TPD, FTIR spectroscopy of adsorbed pyridine, AAS and ICP-AES. Under the applied synthesis conditions, a ZSC material with controlled distribution of nano-ZSM-5 and SBA-15 analog phases can be prepared from ZSM-5 precursors by adjusting the initial Si/Al ratio in the range of 20–30. Increasing the initial Si/Al ratio to 50, only ZSM-5 nanocrystals were obtained whereas reducing the initial Si/Al ratio to 10 led to the formation of a disordered mesoporous SBA-15 analog. The total acidity increases with the crystallinity of the ZSM-5 phase as varying the Si/Al ratio from 10 to 30 despite the decreased amount of incorporated aluminum. However, the acidity declines slightly when raising the Si/Al ratio to 50 because of the low incorporated aluminum. The catalytic performance of the ZSC materials compared to the reference materials, i.e. purely mesoporous Al-SBA-15 and purely microporous H-ZSM-5 was assessed in the gas phase cracking of cumene and 1,3,5-tri-isopropylbenzene (TIPB) as test reactions. The results show that a balanced ratio of nano-ZSM-5 and SBA-15 analog phases obtained by tuning the initial Si/Al ratio is crucial to achieve superior catalytic performance of the ZSC materials in the cracking of both cumene and TIPB.  相似文献   

12.
《Fuel》2006,85(14-15):2202-2212
MCM-41, is one of the latest members of the mesoporous family of materials. They possess a hexagonal array of uniform mesopores (1.4–10 nm), high surface areas (>1000 m2/g) and moderate acidity. Due to these properties the MCM-41 materials are currently under study in a variety of processes as catalysts or catalyst supports. The objective of this study was to evaluate different types of MCM-41 materials as potential catalysts in the catalytic biomass pyrolysis process. We expected that the very high pore size and the mild acidity of these materials could be beneficial to reformulate the high molecular weight primary molecules from biomass pyrolysis producing useful chemical (and especially phenolic compounds) and lighter bio-oil with less heavy molecules. Three different samples of Al-MCM-41 materials (with different Si/Al ratio) and three metal containing mesoporous samples (Cu–Al-MCM-41, Fe–Al-MCM-41 and Zn–Al-MCM-41) have been synthesised, characterized and tested as catalysts in the biomass catalytic pyrolysis process using a fixed bed pyrolysis combined with a fixed catalytic reactor and two different types of biomass feeds. Compared to conventional (non-catalytic) pyrolysis, it was found that the presence of the MCM-41 material alters significantly the quality of the pyrolysis products. All catalysts were found to increase the amount of phenolic compounds, which are very important in the chemical (adhesives) industry. A low Si/Al ratio was found to have a positive effect on product yields and composition. Fe–Al-MCM-41 and Cu–Al-MCM-41 are the best metal-containing catalysts in terms of phenols production. The presence of the Al-MCM-41 material was also found to decrease the fraction of undesirable oxygenated compounds in the bio-oil produced, which is an indication that the bio-oil produced is more stable.  相似文献   

13.
X. Chen  L. Huang  G. Ding  Q. Li 《Catalysis Letters》1997,44(1-2):123-128
Mesoporous Al-MCM-41 materials of different Si/Al ratios have been synthesized and characterized by X-ray powder diffraction, 27Al and 29Si MAS NMR, differential thermogravimetric analysis, N2 adsorption measurements, FT-IR and catalytic cracking of alkanes. The experimental results show that the incorporation of aluminium into the framework of MCM-41 has a great effect on the degree of long-distance order, the surface acidities and the mesoporous structures of the materials. With increase of the aluminium content, the amounts of tetrahedral framework aluminium and the acid sites on the samples increase, but the acid strength decreases. Al-MCM-41 materials exhibit high activity for n-C16 0 cracking and good selectivity for producing low carbon alkylenes, particularly for i-C4 =.  相似文献   

14.
Porous, mixed-phase aluminosilicate materials containing a microporous MFI phase and a mesoporous Al-MCM-48 phase were synthesized using a one-pot synthesis method. Initially, the gemini surfactant “18-12-18” was used to form Al-MCM-48, and then the MFI template tetrapropylammonium (TPA+) was added to the reaction mixture at a later time. Subsequent crystallization at 150 °C led to the formation of a series of mixed-phase materials. These new materials, called “Al-MMM-2” (microporous/mesoporous materials), were characterized using powder X-ray diffraction and 29Si MAS-NMR. Consistent with previous results, the amount of the microporous phase formed was dependent on the crystallization time; thus, a range of materials could be formed from a single reaction mixture. In the alkylation of toluene with benzyl alcohol, Al-MMM-2 materials showed greater structural stability, catalytic activity, and product selectivity during repeated reaction cycles, compared to either pure Al-MCM-48 or pure MFI. This article is dedicated to Professor Christopher Allen, for contributions to inorganic chemistry at the University of Vermont and for his advice, mentorship, and friendship.  相似文献   

15.
The alkaline fusion of volclay (a low-cost sodium exchanged smectite) was used as source to generate the Si and Al components which were effectively transformed into mesoporous Al-MCM-41 depending on hydrothermal condition. The Al-MCM-41 materials were investigated by powder X-ray diffraction (XRD), N2 adsorption–desorption measurements and both scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM). The volclay which converted into a silicon and an aluminium source allowed the formation of well ordered mesoporous Al-MCM-41 materials with high aluminium content (roughly 4 times higher than a Al-MCM-41 produced by a standard method), a high specific surface area (1060 m2/g), a pore volume of 0.8 cm3/g (for pore width < 7.1 nm) with an mono-modal pore distribution with a maximum in the mesoporous pore size of 3.8 nm in pore width.  相似文献   

16.
Design of base catalyst featuring large mesoporous surfaces allows performing base-catalysed reactions in the fields of production of perfumes. Post-synthesis grafting of organotrialkoxysilanes has effectively been applied to incorporate active organic functional groups onto the mesoporous silica surfaces. The novelty of our study is the use of mesoporous materials with different chemical compositions: silicate (MCM-41), aluminosilicate (AlMCM-41; Si/Al = 64) and niobosilicate (NbMCM-41; Si/Nb = 64) and consequently, different acidity, as supports for three aminopropylalkoxysilanes (APMS), [3-(2-aminoethylamino) propyl]trimethoxysilane (2APMS) and 3-[2-(2-aminoethylamino) ethylamino]propyltrimethoxysilane (3APMS). Isomerization of safrole to the corresponding thermodynamically stable isosafrole has been carried out on these amino-grafted MCM-41 materials. Maximum conversion of around 85% with a cis/trans ratio of 1/9 at 433 K in DMF as solvent was obtained. Isomerization is strongly dependent on the nature of the support and changed in the following order: APMS/AlMCM-41 > APMS/NbMCM-41 ? APMS/MCM-41. The nature of the amine chain is also responsible of the activity. The order of activity is APMS/AlMCM-41 > 2APMS/AlMCM-41 > 3APMS/AlMCM-41.  相似文献   

17.
The mesoporous molecular sieves Al-MCM-41 with Si/Al ratio equal to 16, was synthesized under hydrothermal conditions using cetyltrimethylammonium bromide (CTMA+Br) as surfactant. The same ratio of Al-MCM-41 materials was impregnated using sulfuric acid, the materials as sulfated Al-MCM-41 (SO42−/Al-MCM-41). The mesoporous materials viz Al-MCM-41 and SO42−/Al-MCM-41 were characterized using several techniques e.g. ICP-AES, Nephelometer, XRD, FT-IR, TG/DTA, N2-adsorption, solid-state-NMR, SEM and TPD-pyridine. ICP-AES studies indicated the presence of Al in the mesoporous materials. Nephelometer studies indicated the SO42− presence of the SO42−/Al-MCM-41. XRD studies indicated that the calcined materials of Al-MCM-41 and SO42−/Al-MCM-41 had the standard MCM-41 structure. The surface area, pore diameter, pore volume and wall thickness of the mesoporous materials were calculated by BET and BJH equations, respectively. Crystallinity, surface area, pore diameter and pore volume of SO42−/Al-MCM-41 decreased except wall thickness and the expelling aluminum from the Al-MCM-41 framework increased the Lewis acidity. FT-IR studies indicated that Al-ions were incorporated in the hexagonal mesoporous structure of Al-MCM-41 and sulfuric acid was impregnated into hexagonal Al-MCM-41 materials. The thermal stability of as-synthesized Al-MCM-41 materials and SO42−/Al-MCM-41 materials were studied using TG/DTA. The environments of the Al-ions coordinated in the silica matrix were determined by 27Al-MAS-NMR. The morphology of Al-MCM-41 and SO42−/Al-MCM-41 was determined by SEM. The total acidity of Al-MCM-41 and SO42−/Al-MCM-41 materials was determined by TPD-pyridine. The catalytic results were compared with those obtained by using sulfuric acid, amorphous silica–alumina, H-β, USY and H-ZSM-5 zeolites. The SO42−/Al-MCM-41 catalyst exclusively forms the product of dypnone from self-condensation of acetophenone molecules due to higher number of Lewis acid sites and has much higher yields than other catalysts except USY.  相似文献   

18.
    
The catalytic reaction of benzaldehyde with n-heptaldehyde was studied at 100–175°C in a stirred batch autoclave reactor using mesoporous molecular sieve Al-MCM-41 supported MgO. Competitive reactions of cross- versus self-aldolization produce -pentylcinnamaldehyde (-PC) and 2-pentyl-2-nonenal, respectively. Both reactions exhibit similar activation energies. Increasing the deposited amount of MgO on Al-MCM-41 enhances the catalyst base amount but diminishes the surface area. The conversion of n-heptaldehyde increases with catalyst base amount, reaction temperature and reaction time, whereas the -PC selectivity exhibits only small variation with reaction conditions. The catalytic activity of Al-MCM-41 is significantly enhanced by the deposition of MgO.  相似文献   

19.
《Applied Clay Science》2010,48(3-4):351-355
This paper reports the synthesis of ordered mesoporous materials Al-MCM-41 with a specific surface area of 1018 m2/g from bentonite. Pretreated bentonite was simultaneously used as silica and aluminum sources without addition of silica or aluminum reagents. Orthogonal experiments were adopted to optimize the processing parameters. The samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2 adsorption–desorption measurements and Fourier transform infrared spectra (FTIR) techniques. The obtained materials were hexagonal Al-MCM-41. Calcination removed the surfactant while new bonds increased the crosslinking of the frameworks. Proper Si/Al molar ratio was critical for the formation of highly ordered mesoporous materials.  相似文献   

20.
Microporous crystals of zeolites such as Y, Beta, and ZSM-5 are widely used commercial catalysts, but their applications are strongly limited by their small pore sizes. Recent progress in solving this is used to ordered mesoporous materials such as MCM-41, HMS, and SBA-15. These mesoporous materials have pore diameters of 2.0–30 nm and exhibit good catalytic properties for the catalytic conversion of bulky reactants. However, when compared with microporous crystals of zeolites, the catalytic activity and hydrothermal stability are relatively low, which severely hinders their practical applications in industrial catalytic reactions such as petroleum cracking. The relatively low catalytic activity and hydrothermal stability can be attributed to the amorphous nature of the mesoporous walls. In this account, we systemically review the routes for improving catalytic activity and hydrothermal stability of mesoporous materials, which include (1) acidic sulfated zirconia supported in mesoporous materials; (2) strongly acidic and thermally stable mesostructured sulfated zirconia with tetragonal crystalline phase; (3) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in alkaline media; (4) strongly acidic and hydrothermally stable mesoporous aluminosilicates synthesized in strongly acidic media; (5) hydrothermally stable mesoporous titanosilicates with catalytically active titanium species in oxidations; (6) high-temperature generalized synthesis of ultrastable ordered mesoporous silica-based materials by using fluorocarbonhydrocarbon surfactant mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号