首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of hexadecylamine (HDA) on a Chromate phosphate coating on aluminium was studied using an optimized Chromate phosphate bath, The addition of HDA was found to decrease the coating weight, but to enhance the coating quality and corrosion resistance. The inhibitory effect of HDA helps in regulating the excessive attack on the metal and its ability to reduce Cr6+ to Cr3+ compensates the possible time delay for the initiation of coating deposition due to the inhibition.  相似文献   

2.
在金属板料塑性成形加工中 ,起皱是常见的 ,它影响成形件质量 ,预测与防止起皱已成为人们长期以来关注的热点问题。起皱实质上是金属板料的一种压缩不稳定现象。本文把板料塑性屈曲前后的材质状态视为刚塑性 ,板材塑性皱曲时 ,所满足的全部方程 :平衡 ,机动 ,屈服及流动定律 ,归结为一个泛函的求极值问题 ,在这个泛函中 ,内力场与速度场是彼此独立的自变函数。用直接法可以方便地求得金属板料塑性屈曲问题的近似解析解。文中以环缺在边界纵向拉压力作用下的皱曲问题为例 ,具体地给出了皱曲载荷及板的内力及速度场形态  相似文献   

3.
The oxidation of a low-pressure plasma-sprayed (LPPS) NiCrAlY coating on a nickel-base superalloy was studied at 1050 °C in flows of O2, and mixture of O2 and 5% H2O under atmospheric pressure. Water vapor has an obvious effect on the cyclic oxidation of the NiCrAlY coating. There is more decrease in weight gain when exposure to O2 is replaced by exposure to O2 + 5% H2O. The oxide formed on the LPPS NiCrAlY coating after cyclic oxidation in pure oxygen is composed mainly of Cr2O3, and a thin Al2O3-rich layer is formed at the interface between the Cr2O3-rich layer and the coating. The oxide formed on the LPPS NiCrAlY coating after cyclic oxidation in a mixture of O2 + H2O is composed of NiCr2O4, NiO and Cr2O3. The effect of water vapor on the oxidation of the NiCrAlY coating may be attributed to an increase in Ni and Cr cation transport, stress-corrosion cracking of Al2O3 and moisture-enhanced volatility of the Cr2O3 scale.  相似文献   

4.
As a variation of high power pulsed magnetron sputtering technique, modulated pulse power (MPP) magnetron sputtering can achieve a high deposition rate while at the same time achieving a high degree of ionization of the sputtered material with low ion energies. These advantages of the MPP technique can be utilized to obtain dense coatings with a small incorporation of the residual stress and defect density for the thick coating growth. In this study, the MPP technique has been utilized to reactively deposit thick Cr2N and CrN coatings (up to 55 μm) on AISI 440C steel and cemented carbide substrates in a closed field unbalanced magnetron sputtering system. High deposition rates of 15 and 10 μm per hour have been measured for the Cr2N and CrN coating depositions, respectively, using a 3 kW average target power (16.7 W/cm2 average target power density), a 50 mm substrate to target distance and an Ar/N2 gas flow ratio of 3:1 and 1:1. The CrN coatings showed a denser microstructure than the Cr2N coatings, whereas the Cr2N coatings exhibited a smaller grain size and surface roughness than those of the CrN coatings for the same coating thickness. The compressive residual stresses in the CrN and Cr2N coatings increased as the coating thickness increased to 30 μm and 20 μm, respectively, but for thicker coatings, the stress gradually decreased as the coating thickness increased. The CrN coatings exhibited an increase in the scratch test critical load as the thickness was increased. Both CrN and Cr2N coatings showed a decrease in the hardness and an increase in the sliding coefficient of friction as the coating thickness increased from 2.5 to 55 μm. However, the wear rate of the CrN coatings decreased significantly as the coating thickness was increased to 10 μm or higher. The 10-55 μm CrN coating exhibited low wear rates in the range of 3.5-5 × 10−7 mm3 N−1 m−1. To the contrary, the Cr2N coating exhibited relatively low wear resistance in that high wear rates in the range of 3.5 to 7.5 × 10−6 mm3 N−1 m−1 were observed for different thicknesses.  相似文献   

5.
A series of ferrite samples with the chemical formula Ni0.7Zn0.3CrxFe2−xO4 (x = 0.0-0.5) were prepared by a sol-gel auto-combustion method and annealed at 600 °C for 4 h. The resultant powders were investigated by various techniques, including X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and permeability studies. The prepared samples have a cubic spinel structure with no impurity phase. As the Cr3+ content x increases, bulk density and crystallite size decrease, whereas porosity increases. The saturation magnetization decreases linearly from 58.31 to 42.90 emu/g with increasing Cr3+ content. However, coercivity increases with increasing Cr3+ substitution. The magnetic moments calculated from Neel's molecular-field model are in agreement in the experiment results. The initial permeability (μi) decreases with increasing Cr3+ substitution. The decrease in initial permeability (μi) is attributed to decrease in magnetization on addition of Cr3+. The real part of the permeability decreases gradually with increasing frequency in accordance with Snoek's law. The Curie temperature decreases linearly with increasing Cr3+ content.  相似文献   

6.
The oxidation behavior of a martensitic stainless steel with or without glass coating was investigated at 600–800 °C. The glass coating provided effective protection for the stainless steel against high-temperature oxidation. However, it follows different protection mechanisms depending on oxidation temperature. At 800 °C, glass coating acts as a barrier for oxygen diffusion, and oxidation of the glass coated steel follows linear law. At 700 or 600 °C, glass coating induces the formation of a (Cr, Fe)2O3/glass composite interlayer, through which the diffusion of Cr3+ or Fe3+ is dramatically limited. Oxidation follows parabolic law.  相似文献   

7.
Activating effect of anions of sulfuric and phosphoric acids (both in the range from 0.025 to 0.200 mol/l) on the process of zinc chromating in acid (pH 1.1) 0.2 M CrO3 solution is studied by analytical methods. A general balance of oxidized zinc (Zn2+) and reduced chromium (Cr3+) and their distribution between the solution and chromate film for different solution compositions, as well as the elemental composition throughout the film's depth, are determined. It is found that the zinc oxidation and Cr6+ reduction reactions do not proceed in the absence of SO2– 4 ions (that is, when only PO3– 4 ions are present), so that the chromate film cannot form. However, the PO3– 4 ions combined with SO2– 4 ions increase the Zn2+ and Cr3+ ions concentration in the solution significantly, while their concentrations in the film correspondingly decrease. SO2– 4 ions activate the zinc surface because they form soluble complex compounds with Zn2+ and Cr3+ ions and increase the part of the surface, on which the cathodic reduction of Cr6+ to Cr3+ occurs. The activating action of phosphoric acid is caused by the increase in the total (analytical) concentration of H+ ion in the solution; hence, the deposition of the Cr3+ and Zn2+ hydroxide compounds onto zinc is retarded, due to the increased near-surface concentration of H+ ion.  相似文献   

8.
The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY–Cr2O3 and CoNiCrAlY–Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4–25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings’ microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10?2 and 1.36 × 10?2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY–Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating’s degradation. Thus, the CoNiCrAlY–Cr2O3 coating was found to be more protective than the NiCoCrAlY–Cr2O3 coating under hot corrosion condition.  相似文献   

9.
This research examines the deposition of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings on MDN 321 steel through the process of plasma spray. In this process, the solid particle erosion test is established at 200, 400, 600 °C with 30° and 90° impact angles. Alumina erodent is adopted to investigate the erosive behavior of the coating at higher temperatures. The properties of the Cr3C2-NiCr/cenosphere coating are established based on the microhardness, the adhesive strength, the fracture toughness, and the ductility. To quantify volume loss as a result of erosion, an optical profilometer is used. At higher temperature, decrease in the erosion volume loss of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings is observed. The erosion-resistive property of Cr3C2-NiCr/cenosphere coating is higher than that of MDN 321 steel by 76%. This property is influenced by high-temperature stability of mullite, alumina, and protective oxide layer that is formed at elevated temperatures. The morphology of eroded coating discloses a brittle mode of material removal.  相似文献   

10.
The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.  相似文献   

11.
Mechanical properties such as Young’s moduli and fracture toughness of plasma-sprayed Cr3C2-NiCr, WC-Co and Cr2O3 coatings were measured. The tribological properties of the three kinds of coatings were investigated with a block-on-ring self-mated arrangement under water-lubricated sliding. Furthermore, the influences of the mechanical properties on the tribological properties of the coatings were also examined. It was found that the Young’s moduli, bend strengths and fracture toughness of the coatings were lower than the corresponding bulk materials, which may be attributed to the existence of pores and microcracks in the coatings. Among the three kinds of coatings, the magnitude of wear coefficients, in decreasing order, is Cr3C2-NiCr, WC-Co and Cr2O3, and the wear coefficient of Cr2O3 coating was less than 1 × 10−6mm3N−1m−1. The wear mechanisms of the coatings were explained in terms of microcracking and fracturing, and water deteriorated wear performance of the coatings. The higher the fracture toughness and the lower the porosity and length of microcracking of the coating, the more the wear-resistance of the coating.  相似文献   

12.
This paper studied the corrosion properties of five kinds of Cr2O3 coated materials: the SUS316L austenitic stainless steels respectively coated with the Cr2O3 layer (Cr2O3/316), Cr2O3 and 80Ni‐ 20Cr layers (Cr2O3/80NiCr/316), Cr2O3 and 50Ni‐ 50Cr layers (Cr2O3/50NiCr/316), Cr2O3 + 80Ni‐ 20Cr functionally gradient materials (Cr2O3 + 80NiCr FGM), and Cr2O3 + 50Ni‐ 50Cr FGM (Cr2O3 + 50NiCr FGM). All the coatings were made by atmospheric pressure plasma spraying method (APPS). The corrosion resistance of the coated materials was analyzed by immersion tests and electrochemical evaluations. A mechanism of the corrosion failures for these kinds of coated structures was proposed. The different coating structures for improving the adhesion between ceramics and substrates were assessed, and the effect of Cr content in the NiCr coatings on the corrosion property was discussed. The ceramic coatings with the 50Ni‐ 50Cr intermediate layer possessed a better corrosion resistance than that with 80Ni‐ 20Cr. The FGM structures appeared to offer weaker resistance to corrosion attack than that with the intermediate layer in general. Under corrosion test conditions, the corrosion‐proof abilities of the coated structures were, respectively: the Cr2O3/50NiCr/316 in the best rank; the Cr2O3/316, Cr2O3/80NiCr/316, and Cr2O3 + 50NiCr FGM in the second rank; and the Cr2O3 + 80NiCr FGM in the last rank. This means that applying the 50NiCr intermediate layer under the Cr2O3 ceramic coating can further improve the corrosion resistance of Cr2O3/316. Porosity analysis was used to explain the difference of corrosion resistance between the Cr2O3/50NiCr coated material and the Cr2O3 + 50NiCr FGM. The porosity in each layer of the Cr2O3 + 50NiCr FGM was higher than that in the Cr2O3/50NiCr coating, and as a result the corrosion resistance of Cr2O3/50Ni Cr/316 is better than Cr2O3 + 50NiCr FGM.  相似文献   

13.
板料成形性理论评价与深入研究   总被引:6,自引:1,他引:5  
破裂和起皱是板料冲压成形中最主要的两种缺陷。本文对各种判断破裂的拉伸失稳理论和判断起皱的塑性屈曲理论进行了综述 ,指出现有的各种理论存在的缺点和不足。提出了基于极限分析的一般变分原理的思想和方法 ,将板材塑性屈曲时所满足的全部方程归结为一个泛函的求极值问题 ,用直接法可以方便求得金属板料塑性屈曲问题的近似解析解。最后 ,指出了发展一种能综合判断板料破裂和起皱问题的全面或广义成形性理论的必要性 ,并给出了一些研究方向和研究内容。  相似文献   

14.
Commercially available passivation methods for white-rust protection of hot-dip galvanized steel have been investigated. The passivations were either based on trivalent chromium or chromium free. A chromate based conversion coating was used for reference. The treated panels were tested with regard to white rust protection and paintability. The surface chemistry of the conversion coatings was monitored with scanning Auger electron spectroscopy and X-ray photoelectron spectroscopy. Coating thicknesses were measured using Auger electron sputter depth profiling.The passivations were applied with a thickness recommended by the supplier and thus showed large variation. The thickness of the chromium free passivation (Cr-free) is approximately 75 nm. The coating contains the active ions; H3O+, Ti4+, Mn2+, Zn2+, PO43−. The passivation based on trivalent chromium (Cr-III) is approximately 30 nm thick and contains the active ions; H3O+ Cr3+, PO43−, F. The chromate based passivation (Cr-VI) is approximately 5 nm thick and contains the active ions Cr6+/Cr3+, F.The Cr-free and the Cr-III passivations showed similar white rust protection in the corrosion tests. The corrosion resistance was good although it did not fully reach the level of the Cr-VI passivation. The results from the tests of the painted panels showed that the powder paint worked well on all three passivations. The solvent born paint worked best on the passivation based on trivalent chromium. The water born paint showed poor resistance to blistering in the Cleveland humidity test for all three passivations. In this test the passivation with hexavalent chromium showed slightly better results than the chromate free passivations.  相似文献   

15.
利用激光熔覆技术在纯钛表面制备了NiCr涂层。用X射线衍射仪(XRD)和扫描电镜(SEM)分析了涂层的组成和组织结构。在UMT-2MT摩擦磨损试验机上对NiCr涂层在不同载荷和不同滑动速度下的摩擦磨损性能进行了测试。结果表明:NiCr涂层的主要组成物相为NiTi、Ni3Ti、Ni4Ti3、Cr2Ni3和Cr2Ti,涂层与基材冶金结合,涂层晶体结构主要为树枝状晶,涂层的平均显微硬度约为780HV0.2,涂层的摩擦因数随载荷和滑动速度的增加而减小;磨损率随载荷的增加而增加,随滑动速度的增加而减小。涂层的磨损率在10-6 mm3/Nm数量级,具有优异的耐磨性能。  相似文献   

16.
J. Ma  Y. Shi  J. Di  Z. Yao  H. Liu 《工业材料与腐蚀》2009,60(4):274-279
To obtain the composite with a function of corrosion resistance in seawater and microbial environment, we apply low toxic electrolyte which contained Cr3+ instead of Cr6+ as a chromium source to produce Ni-P-Cr/TiO2, Ni-P-Cr/ZrO2 nanocomposite coatings, and Ni-P-Cr/TiO2 microcomposite coating using direct current (DC) electrodeposits technique. The surface morphology, texture, and composition of the composite coatings are characterized by SEM, XRD, and EDX measurements, respectively. The corrosion behavior of the composite coatings is evaluated by polarization curves and electrochemical impedance spectroscopy (EIS). The results with more positive-shifting Ecorr, lowest icorr, and relatively high value of polarization resistance (Rp) proved that compared with other composite coatings, Ni-P-Cr/TiO2 nanocomposite coating with its better passive film and unique antibacterial activity caused by TiO2 nanoparticles incorporated, displayed excellent antibacterial and corrosion resistance property, consistent to the phenomenon that corrosion of this nanocomposite coating in SRB culture medium is not observed.  相似文献   

17.
The corrosion behavior of mild steel has been investigated during the wet and dry cyclic transitions containing Cr3+ ion added as sulfate in order to gain a better understanding of the influence of Cr on the atmospheric corrosion of steels. The corrosion rate during drying is greatly suppressed by the existence of Cr3+ ion in the electrolyte covered with the surface. Lower corrosion rates are observed during drying even if the surface have been polarized to negative potentials below −200 mVSHE during the wet corrosion conditions in which the surface-covered electrolyte contains Cr3+ ion. This corrosion behavior is identical to the case of Cr-containing steel for the wet and dry cyclic transitions without the addition of Cr3+ ion. The composition of rust layer after the wet and dry cyclic transitions is composed of α-FeOOH, γ-FeOOH and Fe3−δO4 for both cases of non-Cr3+ and Cr3+-containing condition, and no significant difference in the mass fraction of the above rust substances between two conditions is observed by means of Mössbauer spectroscopy. The only difference in the rust layer is that the rust formed under the wet and dry cyclic transitions containing Cr3+ ion contains a certain amount of Cr near the steel/rust interface. Those results suggest that the role of Cr during the wet and dry cyclic transitions is the inhibition of the rust reduction and the formation of Fe2+-state intermediate by the existence of Cr in the rust layer. This can lead to the inhibition of the oxygen reduction during drying.  相似文献   

18.
The structure, hardness, and shear adhesion strength have been investigated for Cr3C2-NiCr cermet coatings sprayed onto a mild steel substrate by 200 kW high power plasma spraying (HPS) and high velocity oxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phases form in both as-sprayed coatings. The hardness of the HVOF coating is higher than that of the HPS coating, because the HVOF coating contains more nonmelted Cr3C2 carbide particles. On heat treating at 873 K, the amorphous phase decomposes and the supersaturated nickel phase precipitates Cr3C2 carbides so that the hardness increases in the HPS coating. The hardness measured under a great load exhibits lower values compared with that measured with a small load because of cracks generated from the indentation. The ratio of the hardnesses measured with different loads can be regarded as an index indicating the coating ductility. The ductility of the HVOF coating is higher than that of the HPS coating. Adhesion strength of the HVOF coating was high compared with the HPS coating. The adhesion of the coatings is enhanced by heat treating at 1073 K, and that of the HVOF coating is over 350 MPa.  相似文献   

19.
The structure of atmospheric corrosion product of Fe-5 mass%Cr alloy film has been examined by using synchrotron radiation X-rays and γ-rays for Mössbauer spectroscopy. The relationship between the position of Cr3+ in the atomic arrangement of the rust crystal and the protective performance of the rust layer is discussed. It was found that the rust layer of the Fe-Cr alloy film contains a large amount of ultrafine Cr-goethite. By analyzing the X-ray absorption fine structure at Cr K-edge of the rust layer, we can conclude that Cr3+ is positioned in the double chains of vacant sites in the network of FeO3(OH)3 octahedra in the goethite crystal. This Cr3+ site might explain the protective performance, owing to dense aggregation of fine crystals with cation selectivity, of the Cr-goethite.  相似文献   

20.
High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号