共查询到20条相似文献,搜索用时 62 毫秒
1.
本文首先介绍了模糊C均值聚类算法及其不足。在模糊C均值聚类算法的基础上,结合有效性函数,提出了一种自动聚类算法——自适应的模糊C均值聚类算法,并建立了自适应的模糊C均值聚类算法的研究模型。最后,对改进算法用MATLAB进行编程实现,并通过多组数据集进行实验测试,对产生的多种实验结果进行分析,验证自适应的模糊C均值聚类算法可以实现自动类别数的判定。 相似文献
2.
噪声是影响聚类结果的最重要的因素之一,现有的模糊聚类算法主要通过对隶属度约束进行松弛的方式来降低噪声样本的影响。这种方式仍然存在两个基本问题需要解决:第一,如何评估一个样本是噪声的可能性;第二,如何在抑制噪声样本影响力的同时,保留正常样本的作用力。针对这两问题,该文提出了基于自适应松弛的鲁棒模糊C均值聚类算法(AR-RFCM)。新模型基于K最近邻的方式(KNN)来估计样本的可靠性,自适应地调整松弛参数,从而实现在降低噪声样本影响力的同时,保留可靠样本的作用力。此外,AR-RFCM利用了C均值聚类模型中隶属度的稀疏性来提高可靠样本的作用力,从而提高数据簇的内聚程度,进而降低噪声样本的影响。实验表明,AR-RFCM不仅在处理噪声样本时具有良好的鲁棒性,同时在25个UCI 数据集实验中,分类正确率(兰德指数)平均高于FCM算法7.7864%。
相似文献3.
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM算法利用协方差矩阵来计算参数衡量了数据集的紧凑程度且无须先运行FCM,在新的PCM和FCM基础上提出了新PFCM算法,该算法无须事先运行FCM以计算参数,减少了算法运算时间.对数据集的测试实验结果表明了提出的新算法能同时产生模糊隶属度和典型值,减少聚类时间,同时具有更好的分类准确率. 相似文献
4.
图像分割是指将人们感兴趣的目标从背景中分割出来,分割结果的好坏直接影响后期的图像分析和识别.基于作物病害图像的分割技术就是将病斑从病害图像中分割出来,以便于后期病害的诊断和识别.模糊C均值聚类是一种重要数据分析和建模的无监督方法,为提高作物病害图像的分割效果,根据作物病害图像的特点,提出一种基于模糊C均值聚类算法的作物病害图像自适应分割方法,并与K均值聚类算法进行比较,结果显示本文算法在进行图像分割方面表现出明显优势. 相似文献
5.
《电子技术与软件工程》2017,(18)
模糊聚类是将模糊集的概念应用到传统聚类分析中,让数据集的对象在分组中的隶属用隶属函数来确定,隶属度函数更好地描述边缘像素亦此亦彼得特点,对象在各分组中的隶属度为连续区间[0,1]之间的某个值,以不同程度隶属于多个簇,而非确定硬聚类中的0或1的二值逻辑。模糊C-均值聚类算法是模糊聚类中的一种经典算法,如果样本空间是非线性可聚的,该聚类不能效果就不理想。而核模糊C-均值聚类利用特征映射很好解决了这个问题。最后用正则化参数来提高分割的鲁棒性和提高图像的细节。提出了加权图像,并采用高斯径向基函数。 相似文献
6.
类模糊C均值聚类的关键帧提取算法 总被引:2,自引:0,他引:2
对比现有典型关键帧提取算法存在的缺陷,提出了一种类模糊C均值聚类的关键帧提取算法.该算法预先设定一个最初聚类中心,从而有效地减少了聚类算法的迭代次数;并使用视频帧序列的时序特征来对FCM算法进行限定,提高了聚类效率.实验结果表明,使用该算法提取的关键帧不仅可以充分表达出视频的主要内容,而且还可以根据内容的变化提取出适当数量的关键帧. 相似文献
7.
8.
改进的广义模糊C均值聚类分割算法(GIFP_FCM)是一种新型的模糊聚类算法。然而,GIFP_FCM对噪声很敏感,这是因为该算法忽略了图像的空间信息。为了解决这一问题,本文提出一种新算法,即非局部自适应空间约束聚类算法(FCA_NLASC)。在该方法中,一种新的非局部自适应空间信息被引入到改进的GIFP_FCM的目标函数。该算法的特点是控制每个像素在非局部空间信息图像中的噪声。对于合成图像和真实图像,与GIFP_FCM算法比较,实验结果表明,FCA_NLASC算法能够较好地保持图像细节特征,并且对噪声具有较强的鲁棒性。 相似文献
9.
聚类算法在数据分析与图象处理等许多方面应用十分广泛,尤其是模糊C均值(FCM)聚类算法受到人们的普遍重视。象其它聚类算法一样,进行FCM聚类时,需事先确定一些参数,如:聚类类别数C模糊加权指数m、向量范数等。如何确定数据的最佳分类,使之能准确真实地反映实际数据的内部结构,这就是聚类的有效性问题。本文在实验的基础上对FCM聚类算法进行有效性分析,并提出了一个能表征FCM聚类有效性的启发性函数,得到了一些有用结论。 相似文献
10.
基于QPSO的模糊C均值聚类算法 总被引:2,自引:3,他引:2
针对模糊C均值(FCM)聚类算法存在的缺点,利用量子粒子群优化(QPSO)算法的全局搜索能力,提出了一种新的聚类算法——基于量子粒子群优化的FCM聚类算法(QPSOFCM).QPSOFCM算法先对随机初始点利用QPSO进行优化,然后利用产生的中心点进行聚类,重复上述两步操作直至结果满意为止.新算法可以降低FCM算法对初始点的敏感度,一定程度上避免了FCM算法易陷入局部极优的缺陷.几组数据实验结果表明,与FCM和PSOFCM算法相比,提出的QPSOFCM算法聚类结果更可靠. 相似文献
11.
基于蚁群算法的模糊C均值聚类的改进研究 总被引:1,自引:0,他引:1
在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。该算法利用了蚁群算法全局优化特征以及较强鲁棒性的特点,将通过蚁群算法得到的聚类中心及个数应用到传统FCM算法中,弥补了传统FCM聚类算法的不足。该算法对图像进行分块处理,并引入多尺度梯度,提高了图像分割的准确性,最后通过实验验证了该算法的有效性及实用性。 相似文献
12.
13.
14.
15.
提出了一种基于模糊聚类的视频对象分割方法.首先通过对连续三帧视频图像进行二次差分来得到二次差分图像;然后估计噪声的特征参数滤除背景噪声,提取出视频对象的运动区域;再利用改进的FCM聚类算法对二次帧差图像中的视频对象运动区域进行空域分割,对空域分割结果进行形态学处理,得到视频对象掩模;最终获得较为理想的视频对象.实验结果表明,该算法能够较为准确地分割出视频对象,并且在空间准确度上占优. 相似文献
16.
针对传统模糊C-均值聚类算法对复杂的医学、遥感图像难以获得满意分割效果问题,将图像模糊C-均值聚类引入图像分割问题研究中,提出了基于直方图的图像模糊聚类快速分割算法。将越南学者Le提出的分布式图像模糊聚类算法目标函数进行简化,得到图像模糊聚类算法目标函数;采用拉格朗日乘子法获取其迭代求解所对应的隶属度、中立度、拒分度和聚类中心表达式,设计图像模糊聚类算法并对其收敛性进行了证明。通过复杂医学和遥感图像的分割测试结果表明,新的分割算法相比现有的模糊C-均值聚类分割算法和直觉模糊C-均值聚类分割算法具有更好的分割性能。 相似文献
17.
直方图模糊约束FCM聚类自适应多阈值图像分割 总被引:9,自引:0,他引:9
本文提出了一种新的有效的图像多阈值分割方法.该方法通过对模糊约束直方图目标函数的优化.获得一个最佳模糊约束C划分,根据最大隶属度原则进行图像多阈值化.文中对得到的模糊划分函数进行了分析,同时还讨论了直方图划分类数的自适应确定问题.最后给出了几个典型的实验.理论分析和实验表明了本文方法具有速度快、划分特性良好,鲁棒性强的特点 相似文献
18.
一种基于调和均值的模糊聚类算法 总被引:1,自引:0,他引:1
k调和均值算法用数据点与所有聚类中心的距离的调和平均替代了数据点与聚类中心的最小距离,是一种减小初始值影响聚类结果的有效的聚类方法。本文对k调和均值算法进行扩展,考虑到数据点同时对不同聚类的隶属关系,将模糊的概念应用到聚类中,提出了模糊k调和均值-Fuzzv K—Harmonic Means(FKHM)算法。在中心迭代聚类算法的统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据点加权函数表达式。以划分相似度作为聚类结果的评价准则,实验表明,FKHM算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果。 相似文献
19.
为了精确评价纱线疵点的种类与个数,提出了一种融合空间模糊C均值(FCM)聚类的纱线疵点检测算法.首先利用融合空间FCM聚类算法提取纱线条干;然后对纱线条干进行形态学开运算处理,以获取精确的纱线条干,并利用条干上下边缘点之间的像素个数计算纱线的直径与平均直径;最后根据纱线疵点标准判定纱线疵点的种类与个数.为了验证本算法的... 相似文献