首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A model is proposed to predict the room temperature austenite volume fraction as a function of the intercritical annealing temperature for medium Mn transformation-induced plasticity steel. The model takes into account the influence of the austenite composition on the martensite transformation kinetics and the influence of the intercritical annealing temperature dependence of the austenite grain size on the martensite start temperature. A maximum room temperature austenite volume fraction was obtained at a specific intercritical annealing temperature T M. Ultrafine-grained ferrite and austenite were observed in samples intercritically annealed below the T M temperature. The microstructure contained a large volume fraction of athermal martensite in samples annealed at an intercritical temperature higher than the T M temperature.  相似文献   

2.
Manganese enrichment of austenite during prolonged intercritical annealing was used to produce a family of transformation-induced plasticity (TRIP) steels with varying retained austenite contents. Cold-rolled 0.1C-7.1Mn steel was annealed at incremental temperatures between 848 K and 948 K (575 °C and 675 °C) for 1 week to enrich austenite in manganese. The resulting microstructures are comprised of varying fractions of intercritical ferrite, martensite, and retained austenite. Tensile behavior is dependent on annealing temperature and ranged from a low strain-hardening “flat” curve to high strength and ductility conditions that display positive strain hardening over a range of strain levels. The mechanical stability of austenite was measured using in-situ neutron diffraction and was shown to depend significantly on annealing temperature. Variations in austenite stability between annealing conditions help explain the observed strain hardening behaviors.  相似文献   

3.
Retention of austenite during the intercritical annealing of a low carbon, low-alloy, dual-phase steel and the mechanical stability of retained austenite R) have been studied as a function of starting microstructure and annealing conditions. A quenched and tempered(QT) starting microstructure has been found to result in higher γR volume fractions compared to fully martensitic(Q) and ferrite plus pearlitic(F + P) starting structures for all annealing conditions employed in this work. The austenite formed by annealing up to 792 °C (where the kinetics are dominated by higher nucleation rates) is more prone to retention compared to that formed by annealing beyond 792 °C (where the kinetics are mainly dominated by higher growth rates). A smaller size of γR particles has a better mechanical stability against deformation-induced martensite transformation. Formerly Master's Student at the University of Manitoba  相似文献   

4.
The structures produced in a Nb-microalloyed steel by oil quenching after intercritical anneals at 760 and 810 °C have been examined by light and transmission electron microscopy. After both anneals, the periphery of the austenite pool transforms on cooling to ferrite in the same orientation as the ferrite retained during intercritical annealing. Thus the ferrite forms by an epitaxial growth mechanism without the formation of a new interface or grain boundary. The new ferrite is precipitate-free in contrast to the retained ferrite which develops a very dense precipitate dispersion during intercritical annealing. In the carbonenriched interior of the austenite pool beyond the epitaxial ferrite only martensite forms in specimens annealed at 760 °C but various mixtures of ferrite and cementite form in specimens annealed at 810 °C. The latter structures include lamellar pearlite, a degenerate pearlite, and cementite interphase precipitation. All Nb is in solution in the austenite formed at 810 °C, and therefore the low hardenability of the specimens annealed at that temperature is best explained by the effect of low austenite carbon content.  相似文献   

5.
The effect of boron on the hardenability of austenite during the production of dual-phase steel and on tensile properties has been studied. Increasing boron content from 0. 0005 to 0. 0029 wt pct decreased the volume fraction of austenite present at constant intercritical annealing temperature but increased the fraction of the austenite which transformed to martensite on cooling. Increasing boron also decreased the sensitivity of martensite content to cooling rate and, therefore, of tensile properties to cooling rate. The lower volume fraction of austenite present at constant intercritical annealing temperature, and the consequentially higher carbon content of the austenite, was in agreement with the known effect of boron on the phase diagram. The previously determined effect of carbon concentration in austenite on the austenite’s martensitic hardenability was sufficient to explain the observed effects of increasing boron content. The absence of a direct effect of boron was investigated using particle-tracking autoradiography (PTA) to follow changes in boron segregation. The pattern of segregation to prior austenite grain boundaries in the initial, normalized condition dispersed slightly on holding in the (α + γ ) phase field, but no evidence was found of resegregation to α/γ interfaces. X. P. SHEN, on leave from the Central Iron and Steel Research Institute, Beijing, People’s Republic of China.  相似文献   

6.
The influence of cooling rate from the intercritical αγ region on the microstructure of a vanadium bearing HSLA steel was investigated by transmission electron microscopy. Oil quenching produced an essentially ferrite-martensite dual phase structure with ∼4 vol pct of fine particle and thin film retained austenite. In contrast, the slower air cooling resulted in a larger amount (∼10 vol pct) of retained austenite in addition to the ferrite and martensite phases. A major portion of the retained austenite in the air cooled specimen was of the blocky morphology (1 to 6 μm , with the remainder eing the submicron variety, similar to that of the oil quenched specimen. In conformance with the terminology of earlier studies, “retained” ferrite and “transformed” ferrite were observed in the air cooled steel while oil quenching completely suppressed the transformed ferrite. Retained ferrite, the cleaner of the two in terms of precipitate content, is the high temperature ferrite that coexists with the austenite at the intercritical temperature and which is retained on cooling. The transformed ferrite, on the other hand, forms from the decomposition of the austenite and contains banded carbonitrides (row precipitation) much like the initial microstructure of the HSLA steel. formerly known as B. V. N. Rao formerly with General Motors Research Laboratories, Warren, MI,  相似文献   

7.
 Steels of constant manganese and carbon contents with 0.34-2.26 wt. % silicon content were cast. The as-cast steels were then hot rolled at 1100°C in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm thickness. Dual-phase microstructures with different the volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition of intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual-phase steels. The partitioning of manganese in dual-phase silicon steels were investigated using energy-dispersive X-ray spectrometry (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritical annealing temperature and silicon content of steels. It was also shown that the solubility of manganese in ferrite and austenite decreased with increasing intercritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite present in dual-phase silicon steels.  相似文献   

8.
Steels of constant manganese and carbon contents with silicon content of 0.34%-2.26% were cast.The as-cast steels were then hot rolled at 1100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm in thickness. Dual phase microstructures with different volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition to intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual phase steels. The partitioning of manganese in dual phase silicon steels was investigated using energy-dispersive spectrometer (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritical annealing temperature and silicon content of steels. It was also found that the solubility of manganese in ferrite and austenite decreased with increasing intercritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite existed in dual phase silicon steels.  相似文献   

9.
研究了钒微合金化对高强双相钢微观组织及性能的影响。与Fe-0.186C-1.5Mn-0.3Si-0.008N参照钢相比,加入0.14%V带来如下效果:(1)在冷轧及退火状态铁素体晶粒高度细化;(2)严重推迟在连续退火过程中铁素体向奥氏体转变的初始动力学;(3)慢冷条件下铁素体开始转变温度稍微提高,但珠光体和贝氏体转变被抑制,导致淬透性提高;(4)在临界退火温度≤740℃时观察到未溶渗碳体;(5)750℃/180 s退火后铁素体相中发现大量V(C,N)析出(平均直径7.4 nm),而马氏体(奥氏体)中析出物稀少,尺寸更大(平均直径13.4 nm);(6)不含钒参照钢抗拉强度随马氏体体积分数增量为~16 MPa/%,而含钒钢由于晶粒细化和铁素体选择强化,强度随马氏体含量变化增量相当低(~4 MPa/%),在马氏体体积分数45%变软。  相似文献   

10.
A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at ∼0.55 V m. A further increase in V m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V m>0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.  相似文献   

11.
A study has been carried out on an Fe–0.11% C–1.58% Si–0.4% Mn-dual phase steel. The dual-phase microstructures and properties are significantly affected by both the intercritical temperature and cooling rate from (α + γ) field. Upon rapid cooling (water or oil quench) from the temperature range 735–820°C, the structure comprises ferrite + martensite. On the other hand, slow cooling (air cooling) from the temperature range 735–820°C produces microstructures containing ferrite + martensite + pearlite/bainite and more favourable mechanical properties as: σ0,2 = 281–296 MPa, σUTS = 632–690 MPa, TE = 26–30% and continuous yielding behaviour.  相似文献   

12.
采用冷轧+两相区温轧退火(CR+WR+IA)热处理工艺,研究了两相区退火时间对超细晶铁素体与奥氏体中组织形貌演变、C和Mn元素配分行为以及力学性能的影响。结果表明,冷轧试验钢经两相区形变退火处理后,获得了由铁素体、残余奥氏体或新生马氏体组成的超细晶复相组织。在645℃随退火时间的延长,形变马氏体向逆相变奥氏体配分的C、Mn元素增多,C、Mn元素富集位置增加,同时富Mn区形变马氏体回复再结晶现象明显;伴随少量碳化物溶解,试验钢的屈服强度由741持续降低到325MPa。两相区退火10min时,试验钢力学性能最佳,此时抗拉强度达到最大值1141MPa,断后伸长率及均匀伸长率分别为236%和181%,强塑积达到26928MPa·%。  相似文献   

13.
Two plain carbon steels with varying manganese content (0.87 wt pct and 1.63 wt pct) were refined to approximately 1 μm by large strain warm deformation and subsequently subjected to intercritical annealing to produce an ultrafine grained ferrite/martensite dual-phase steel. The influence of the Mn content on microstructure evolution is studied by scanning electron microscopy (SEM). The Mn distribution in ferrite and martensite is analyzed by high-resolution electron backscatter diffraction (EBSD) combined with energy dispersive X-ray spectroscopy (EDX). The experimental findings are supported by the calculated phase diagrams, equilibrium phase compositions, and the estimated diffusion distances using Thermo-Calc (Thermo-Calc Software, McMurray, PA) and Dictra (Thermo-Calc Software). Mn substantially enhances the grain size stability during intercritical annealing and the ability of austenite to undergo martensitic phase transformation. The first observation is explained in terms of the alteration of the phase transformation temperatures and the grain boundary mobility, while the second is a result of the Mn enrichment in cementite during large strain warm deformation, which is inherited by the newly formed austenite and increases its hardenability. The latter is the main reason why the ultrafine-grained material exhibits a hardenability that is comparable with the hardenability of the coarse-grained reference material.  相似文献   

14.
The effects of initial microstructure and thermal cycle on recrystallization, austenite formation, and their interaction were studied for intercritical annealing of a low-carbon steel that is suitable for industrial production of DP600 grade. The initial microstructures included 50 pct cold-rolled ferrite–pearlite, ferrite–bainite–pearlite and martensite. The latter two materials recrystallized at similar rates, while slower recrystallization was observed for ferrite–pearlite. If heating to an intercritical temperature was sufficiently slow, then recrystallization was completed before austenite formation, otherwise austenite formed in a partially recrystallized microstructure. The same trends as for recrystallization were found for the effect of initial microstructure on kinetics of austenite formation. The recrystallization–austenite formation interaction accelerated austenization in all the three starting microstructures by providing additional nucleation sites and enhancing growth rates, and drastically altered morphology and distribution of austenite. In particular, for ferrite–bainite–pearlite and martensite, the recrystallization–austenite formation interaction resulted in substantial microstructural refinement. Recrystallization and austenite formation from a fully recrystallized state were successfully modeled using the Johnson–Mehl–Avrami–Kolmogorov approach.  相似文献   

15.
The transformation, microstructure and mechanical properties of the 0. 2C- 5Mn TRIP steel after intercritical annealing were investigated using dilatometer, scanning electronic microscopy (SEM), transmission electron microscopy(TEM), X- ray diffraction (XRD), and tensile testing machine. The phase transformation thermodynamics of the investigated steel after intercritical annealing was calculated by Factsage software and the characteristics of the transformation were discussed. The results show that the reversed austenite content increases with the increasing of the intercritical annealing temperature, the carbon content in reversed austenite firstly increases and then decreases, manganese content in reversed austenite decreases, which results in the decreasing of the thermal stability of reversed austenite. When the intercritical annealing temperature is 700??, an obvious martensitic transformation occurs during the cooling process. With the increasing of intercritical annealing temperature, cementite is gradually dissolved, but it cannot be completely dissolved due to the short transformation time. When the intercritical annealing temperature is 600-675??, the microstructure after intercritical annealing consists of ferrite, cementite and retained austenite. When the intercritical annealing temperature is 700??, the microstructure after intercritical annealing consists of ferrite, retained austenite, martensite and a small amount of undissolved cementite. The engineering stress and strain curves of the investigated steel are significantly changed with increasing intercritical annealing temperature. At the same time, the optimal mechanical properties with tensile strength of 1138MPa and total elongation of 23% can be obtained after annealed at 675?? for 3min.  相似文献   

16.
Intercritically annealed 10 pct Mn steel has been shown to exhibit an excellent combination of strength and ductility due to the plasticity-enhancing mechanisms of mechanical twinning and strain-induced martensite transformation occurring in sequence. This mechanical behavior is only achieved for a multi-phase microstructure obtained after annealing within a specific intercritical temperature range. A model for the selection of the optimal intercritical annealing temperature was developed to achieve a high strength-ductility balance for 10 pct Mn multi-phase steel. The model considers the room temperature stacking fault energy and the thermodynamic stability of the retained austenite.  相似文献   

17.
The effect of low-temperature aging, with aging temperatures up to 170°C, on a cold-rolled CMn−CrMo dual-phase (DP) ferrite-martensite steel was investigated. This material was processed using three different intercritical annealing treatments, leading to DP structures with different microstructures and properties. It has been found that both the aging in the ferrite phase and the tempering in the martensite play an important role in the mechanical behavior of the material with regard to the strain aging phenomena. The yield stress increase accompanying the aging phenomenon revealed three separate aging stages. In the present study, those stages were determined to be the result of the pinning of dislocations in the ferrite, the C-cluster formation, or low-temperature carbide precipitation in the ferrite and the volume contraction of the martensite due to formation of low-temperature carbides, leading to the relief of residual stresses in the ferrite. In the absence of a clear yield point, a new method is proposed to measure the increase in yield stress due to aging only.  相似文献   

18.
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.  相似文献   

19.
The effect of annealing temperature on the microstructure, mechanical property and austenite content for 0. 1C- 5Mn steel was studied by ART (Austenite Reverted Transformation) heat treatment process. The morphology, metastable austenite content and mechanical properties of experimental steel were characterized by means of SEM, XRD and tensile testing at room temperature. The results indicate that the structure of experimental steel is composed of ferrite and retained austenite; with the increase of the inintercritical annealing temperature, precipitation and redissolution of carbides are found in experimental steels; simultaneously, the lath- like deformed martensite reverts to form equiaxed ferrite through the recovery and polygonization, and granular austenite undercools to lath- like and blocky martensite; the contents of retained austenite are similar in 630, 645 and 660?? samples, which are 18. 4 vol.%, 19. 5 vol.% and 18. 8 vol.%, respectively; with the increase of the annealing temperature, the volume fraction of the retained austenite suddenly drops and a large amount of reversed austenite changes into martensite; the combination of different annealing temperatures indicates that the experimental steel can obtain the best comprehensive mechanical properties when the annealing temperature is 660??.  相似文献   

20.
陈广兴  许晓嫦 《钢铁》2022,57(7):146-153
 为探索原始组织形态对15CrMoR钢时效过程低温冲击性能的影响,明确15CrMoR钢具有高时效冲击性能稳定性的原始组织形态,通过控制奥氏体化后的冷却方式获得了15CrMoR钢的3种原始组织,使用OM、SEM、EPMA和EBSD等材料结构表征方法和低温冲击测试研究了15CrMoR钢的显微组织和时效态低温冲击性能。结果表明,15CrMoR钢奥氏体化后分别以炉冷、空冷和风冷的方式冷却至室温,分别获得了粗大铁素体+片状珠光体组织、铁素体+退化珠光体组织和粒状贝氏体组织。片状珠光体组织中碳化物主要呈层片状,退化珠光体中的碳化物主要呈断续短杆状和颗粒状,粒状贝氏体中的富碳M-A岛主要沿晶界分布。3种原始组织形态的15CrMoR钢在循环时效过程中均发生了晶界碳化物析出和长大,导致低温冲击性能不断恶化。当晶界碳化物呈链状分布时,15CrMoR钢的低温冲击性能较差。粗大的铁素体+片状珠光体组织晶界面积较少,导致晶界碳化物容易呈链状分布;粒状贝氏体中主要沿晶界分布的富碳M-A岛也容易导致晶界碳化物呈链状分布。因此,原始组织为铁素体+退化珠光体的15CrMoR钢在循环时效过程中具有较好的冲击性能稳定性,经历6次循环时效后,-10 ℃平均冲击吸收功仍高达196 J;而原始组织为铁素体+片状珠光体和原始组织为粒状珠光体的15CrMoR钢,经历4次循环时效后,晶界处已形成呈链状分布的碳化物,-10 ℃平均冲击吸收功均仅为18 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号