首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A solid-state metathesis approach initiated by microwave energy has been successfully applied for the synthesis of orthovanadates, M3V2O8 (M = Ca, Sr, and Ba). The structural, vibrational, thermal, optical and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, magnetic property measurements and diffused reflectance spectra in the UV-VIS range. The direct bandgap of the synthesized materials was found to be 3·55 ± 0·2 eV, 3·75 ± 0·2 eV and 3·57 ± 0·2 eV for Ca3V2O8, Sr3V2O8 and Ba3V2O8, respectively.  相似文献   

2.
《Materials Letters》2003,57(16-17):2545-2552
MX6Ti6O19 (M=Ba, Sr and Ca; X=Mg and Zn) ceramics have been synthesized by the conventional solid state ceramic route. The dielectric properties such as dielectric constant (εr), loss tangent (tanδ) and temperature coefficient of dielectric constant (τεr) of the sintered ceramic compacts are studied using an impedance analyzer up to the 13-MHz region. The zinc compositions have relatively high dielectric constant and low loss tangent compared to the Mg analogue. Out of the samples studied, BaZn6Ti6O19 ceramics show excellent dielectric properties. The structure and microstructure of these ceramic samples are also studied using powder X-ray diffraction, FTIR and SEM methods, and the results are presented.  相似文献   

3.
This work examines the effect of KBF4 additions on the crystallization behavior of glasses based on the multicomponent systems MO-Bi2O3-B2O3 with M = Ca, Sr, and Ba. The glass-ceramic composites obtained contain a δ-Bi2O3-based crystalline phase with a crystallite size of ≃7 nm, evenly distributed over the glass matrix. The 400°C electrical conductivity of the nanocomposites reaches 2 × 10−4 S/cm, and the activation energy is 1.1 eV, typical of anion conduction. These values are comparable to those reported for δ-Bi2O3 ceramics.  相似文献   

4.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

5.
6.
7.
Magnesium niobate (MgNb2O6) powder was synthesized by the conventional ceramic route as well as by the molten salt route using a eutectic mixture of NaCl-KCl as the salt and Mg(NO3)2-6H2O and TiO2 as the starting materials. Pure phase of MgNb2O6 could be obtained by the molten salt method at 1100°C. However, in ceramic method the pure phase of MgNb2O6 was obtained by heating at 1025°C for 20 h. On sintering at 1100°C the dielectric constant and dielectric loss of MgNb2O6 obtained by the molten salt method was found to be 19.5 and 0.004 at 100 kHz at room temperature. Lower values were obtained for these oxides prepared by the ceramic route, 16.6 and 0.000518, respectively. In both cases the dielectric constant was quite stable with frequency.  相似文献   

8.
The high dielectric constant X8R dielectric materials could be sintered at 1,240 °C by doping 2.5 mol% Pb(Ti,Sn)O3 additives into the BaTiO3 ceramics, with a dielectric constant greater than 3,400 at 25 °C, dielectric loss lower than 2.0% and temperature coefficient of capacitance (TCC) less than ±15% from −55 to 150 °C, which satisfied X8R specification. The effects of Pb(Ti,Sn)O3 on the microstructure and dielectric properties of BaTiO3-based ceramics were investigated. Doped with Pb(Ti,Sn)O3 additives, the partial solid solution was formed between Pb(Ti,Sn)O3 and BaTiO3. Due to the high Curie point of Pb(Ti,Sn)O3, the Curie point of the ceramics was markedly shifted to higher temperature about 150 °C, and the temperature coefficient of capacitance curves was flattened. The increase of the tetragonality (c/a ratio) and the fine microstructure were resulted in the increase of dielectric constant. With Pb(Ti, Sn)O3 content up to 3 mol%, the depression of Ti4+’s polarization and the decrease of the tetragonality (c/a ratio) were resulted in the decrease of dielectric constant.  相似文献   

9.
The alkaline orthosilicates of M2SiO4 (M = Ba, Mg, Sr) activated with Dy3+ and co-doped with Ho3+ are prepared through conventional solid-state method, i.e., mixing and grinding of solid form precursors followed by high-temperature heat treatments of several hours in furnaces, generally under open atmosphere and investigated by X-ray diffraction (XRD) to get phase properties and photoluminescence (PL) analysis to get luminescence properties. The thermal behaviours of well-mixed samples were determined by differential thermal analysis (DTA)/thermogravimetry (TG). The PL spectra show that the 478 and 572 nm maximum emission bands are attributed, respectively, to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions.  相似文献   

10.
Pb2+ doped SrAl2B2O7 was prepared by solution combustion synthesis. The synthesized material was determined by powder XRD. The photoluminescence properties of the synthesized phosphor were investigated at room temperature using a spectrofluorometer. The emission peak of Pb2+ doped SrAl2B2O7 was observed at 420 nm upon excitation at 277 nm. The Stokes shift of SrAl2B2O7:Pb2+ was calculated to be 12 292 cm−1. The luminescence behavior of Pb2+ in both SrAl2B2O7 and CaAl2B2O7 was discussed. The text was submitted by the authors in English.  相似文献   

11.
Ho2Ti2O7 and LnYTi2O7 (Ln = Dy, Ho) pyrochlores have been synthesized using hydroxide coprecipitation, mechanical activation, and firing at 1600°C. The bulk and grain-boundary components of their conductivity have been determined for the first time by impedance spectroscopy. The 740°C bulk conductivity of Ho2Ti2O7 is 4 × 10?4 S/cm, and that of HoYTi2O7 is 1 × 10?3 S/cm, with activation energies E a = 1.01 and 1.17 eV, respectively, suggesting that these materials are new oxygen-ion conductors. The bulk conductivity of DyYTi2O7 (3 × 10?4 S/cm at 740°C, E a = 1.09 eV) is almost one order of magnitude lower than that of HoYTi2O7 (1 × 10?3 S/cm at 740°C, E a = 1.17 eV).  相似文献   

12.
We have studied the compounds K2MgV2O7 and M2CaV2O7 with M = K, Rb, and Cs. These vanadates melt incongruently in the range 635–717°C. Cooling their decomposition products to room temperature leads to the formation of nonequilibrium phase assemblages characteristic of the corresponding oxide systems. The compounds offer broadband photo- and radioluminescence with an essentially white (to the human eye) emission spectrum. A model is proposed for luminescence centers in the vanadates, which involves the formation of defects in vanadium-oxygen groups, and an energy level diagram of the emission centers is constructed in the form of configuration curves in the harmonic oscillator approximation. The luminescent properties of these compounds suggest that they can be used as basic components of cathodo- and roentgenoluminescent screens and white-light-emitting diodes with improved color performance.  相似文献   

13.
14.
Li6Mg7Ti3O16 ceramics were prepared by the conventional solid-state method with 1–5 wt% LiF as the sintering aid. Effects of LiF additions on the phase compositions, sintering characteristics, micro-structures and microwave dielectric properties of Li6Mg7Ti3O16 ceramics were investigated. The LiF addition could effectively lower the sintering temperature of Li6Mg7Ti3O16 ceramics from 1550 to 900 °C. For different LiF-doped compositions, the optimum dielectric permittivity (ε r ) and quality factor (Q·f) values first increased and then decreased with the increase of LiF contents, whereas the temperature coefficient of resonant frequency (τ f ) fluctuated between ??14.39 and ??8.21 ppm/°C. Typically, Li6Mg7Ti3O16 ceramics with 4 wt% LiF sintered at 900 °C exhibited excellent microwave dielectric properties of ε r ?=?16.17, Q·f?=?80,921 GHz and τ f ?=???8.21 ppm/°C, which are promising materials for the low temperature co-fired ceramics applications.  相似文献   

15.
CuO-doped lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) and barium zirconate titanate (Ba(Zr0.07Ti0.93)O3, BZT) were prepared via a multi-step solid-state reaction process. The BNT–BZT with CuO dopant ceramics sintered at 1150–1180 °C for 2 h in air showed a pure perovskite structure. SEM images reveal that a small amount of CuO (<2 mol%) play a significant role on the microstructure to improve its sintering attributes, while it will degrade when the dopant is added beyond 2 mol%. The dielectric and piezoelectric properties of CuO-doped BNT–BZT ceramics were evaluated. At room temperature, the sample doped with 2 mol% CuO shows quite good properties such as a high piezoelectric constant (d 33 ∼156.5 pC/N) and a high electromechanical coupling factor (k t ∼52%). The depolarization temperature increased dramatically and the maximum permittivity temperature decreased slightly.  相似文献   

16.
Solid state reaction technique was employed to synthesize Ba(Nb0.2Ti0.8)O3 [BNT], and 0.9Ba(Nb0.2Ti0.8)O3 + 0.1BaZrO3 [BNT + BZ] samples. Sintered pellets were investigated for its dielectric (εr and tanδ) properties in the temperature range 100 K–380 K and in the frequency range of 100 Hz–1 MHz. The variation of εr and tan δ may be attributed to hopping of trapped charge carriers, which resulted in an extra dielectric response in addition to the dipole response. Hysteresis loop measurements were studied in the temperature regime 295 K–423 K. Loop area shrunk with the increase of temperature that may be due to phase transition from ferroelectric to paraelectric state.  相似文献   

17.
A gel was formed when a mixture of TiOCl2 and tartaric acid was heated on a water bath. Ultrafine powders of TiO2 in the anatase phase were formed, when the gel was decomposed at 623 K and the mole ratio of tartaric acid to titanium was 2. The anatase phase was converted into rutile phase on annealing at higher temperatures, > 773 K. When initial ratio of titanium to tartaric acid was < 2, the decomposition of gel leads to the formation of mixed phases of rutile and anatase. However, pure rutile phase was not formed by the decomposition of gel for any ratio of tartaric acid and titanium. These powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area measurements. The average particle size obtained for anatase phase was 3 nm whereas it was 30 nm for rutile phase. Raman scattering experiments were also performed to confirm both anatase and rutile phases.  相似文献   

18.
The microstructures and dielectric properties of Y/Zn codoped BaTiO3 ceramics sintered in a reducing atmosphere were investigated. XRD analysis indicated the crystal structure of samples change from tetragonal to pseudocubic with increasing Y2O3 and ZnO content. SEM micrographs showed Y2O3 can suppress grain growth more effectively compared with ZnO, which is ascribed to the presence of second phase Y2Ti2O7. Proper amount of Y2O3 and ZnO can significantly improve the dielectric temperature characteristics due to the formation of grain core-shell structure. The high performance dielectrics meeting the X7R code were achieved by codoping 1.5 mol% Y2O3 and 3.0 mol% ZnO.  相似文献   

19.
20.
Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are prepared from spray-dried powder by spark plasma sintering (SPS) and by normal sintering. By the application of SPS, ceramics with >96% relative densities could be obtained by sintering at 1,100 °C for 5 min in air atmosphere. The pellet as sintered by SPS at 1,100 °C was black and conductive. Although SPS was carried out in air atmosphere, the samples were deoxidized by heating the carbon die. By post-annealing at 1,000 °C for 12 h in air, the pellet was oxidized and became white and insulating. Grain growth was suppressed in the ceramics prepared by SPS, and the average grain size was 0.52 μm. The starting powder contained 1.90% carbon, mainly as binder, and the SPS-prepared ceramics and ordinary prepared ceramics contained 0.15 and 0.024% carbon, respectively. The BZT ceramics obtained by SPS and the subsequent annealing at 1,000 °C for 12 h exhibited a mild temperature dependence of their dielectric constant. The field-induced displacement of the BZT ceramics was less hysteretic and smaller than that of the ceramics sintered by the conventional method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号