首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M.K. Mittal  L. Varshney   《Solar Energy》2006,80(9):1112-1120
This paper is concerned with thermohydraulic investigations on a packed bed solar air heater having its duct packed with blackened wire screen matrices of different geometrical parameters (wire diameter and pitch). The thermohydraulic performance of an air heater in terms of effective efficiency is determined on the basis of actual thermal energy gain subtracted by the primary energy required to generate power needed for pumping air through the packed bed. Based on energy transfer mechanism in the bed, a mathematical model is developed to compute effective efficiency. A design criterion is also suggested to select a matrix for packing the air flow duct of a solar air heater which results in the best thermal efficiency with minimum pumping power penalty. Resulting values of effective efficiency clearly indicate that the packed bed solar air heater investigated is thermohydraulically efficient as compared to flat plate collectors.  相似文献   

2.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
B. Paul  J. S. Saini 《Renewable Energy》2004,29(11):1863-1876
Use of packed bed for the improvement of performance of solar air heater has been proposed by several investigators. However, this enhanced efficiency is accompanied by substantial increase in pressure loss, which results in higher running cost of the system. So, the solar energy collection system should be optimized in such a way that it will give energy with minimum cost. In this work two types of packed bed collectors, one with wire mesh screen matrix bed and other with pebble bed, were optimized on the basis of minimum cost per unit energy delivered. Tables for optimum values of bed parameters namely number of layers, porosity, pitch to wire diameter ratio and pebble diameter have been prepared on the basis of minimum cost per unit energy delivered. These tables can be used by a designer for selecting the optimum values of bed parameters.  相似文献   

4.
An experimental investigation has been carried out on a packed bed solar air heater using wire mesh as packing material. Data pertaining to heat transfer and friction characteristics were collected for air flow rates ranging from 0.0159 to 0.0347 kg/s-m2 for eight sets of matrices with varying geometrical parameters. The thermal efficiency of a packed bed solar air heater was compared with that of a conventional solar air heater to determine the enhancement which was found to be strong function of system and operating parameters of the bed. It was found that an enhancement of the order of 76.9-89.5% can be obtained. Experimental data were utilised to develop correlations for Colburn Jh factor and friction factor as function of geometrical parameters of the bed and the flow Reynolds number. These correlations were found to predict the experimental results with reasonable accuracy. It has also been found that the present correlations show much better agreement as compared to the values predicted by earlier correlations for such systems.  相似文献   

5.
Improvement of the thermal performance of a solar air heater can be obtained by enhancing the rate of heat transfer. The thermal efficiency of double pass solar air heater is higher in comparison to single pass with the concept involved of doubling the heat transfer area without increase in the system cost. Numbers of studies have been carried out on the performance analysis of double pass solar air heater provided with heat transfer augmentation techniques viz. using extended surfaces, packed bed, corrugated absorber were reported in the literature and found more increase in the thermal efficiency in comparison to conventional double duct solar air heater. These studies includes the design of double pass solar air heater, heat transfer enhancement, flow phenomenon and pressure drop in duct. This paper presents an extensive study of the research carried out on double pass solar air heater. Based on the literature review, it is concluded that most of the studies carried out on double pass solar air heater integrated with porous media and extended surfaces. Few studies were carried out with corrugated absorber. Further no study has been reported so far on double pass solar air heater with absorber plate artificially roughened from both the sides. Mathematical models based on energy analysis of some configurations of solar air heater have been discussed.  相似文献   

6.
This investigation is concerned with the design and performance of a flat-type solar air heater in which air flows perpendicularly from the transparent cover to a porous absorber plate. The design phase involved a stability analysis to determine the critical distance (maximum allowable distance) between the absober and transparent cover, for suppressing convection currents, at various environmental and operating conditions. These results are useful to designers of solar collectors of the proposed type. In addition, the thermal performance of this solar heater at its optimum design conditions was computed for a wide range of system parameters illustrating the contribution of conduction and radiative modes of heat transfer. The results indicate that the best operating efficiency can be obtained when running the collector with a mass flow rate of m > 40 kg/m2.h. Furthermore, the collector thermal performance is superior than channel type solar air heaters operating under similar conditions and much simpler than honeycomb porous bed solar air heaters.  相似文献   

7.
In the present study the chevron pattern of fold structure produced using a recently developed continuous folding technique is considered for the first time in the application of solar air collectors. An experimental study of two types of flat bed solar air collectors, with flat plate and chevron pattern absorbers, is carried out to investigate their performance over a wide range of operating conditions. A theoretical comparison between flat plate, v-grooved and chevron pattern absorbers is also presented. Under the considered configurations and operating conditions, the chevron pattern absorber is found to be the most efficient and that the flat plate absorber the least efficient. The chevron pattern is found to have higher performance, reaching up to 20% improvement in thermal efficiency and an increase of 10 °C in outlet temperature at some ranges of mass flow rates.  相似文献   

8.
In order to investigate the effect of system and operating parameters on heat transfer and pressure drop characteristics of packed bed solar energy storage system with large sized elements of storage material, an extensive experimental study has been conducted and reported in the present paper. Five different shapes of elements of storage material have been investigated. Correlations have been developed for Nusselt number and friction factor as function of Reynolds number, sphericity and void fraction. The present correlations can be used to predict the performance of the actual packed bed solar energy storage system having packing material elements of different shapes and bed porosities within the range of parameters investigated.  相似文献   

9.
G. Flamant  G. Olalde 《Solar Energy》1983,31(5):463-471
Present investigation has been concerned with high temperature gas heating through porous media (SiC and ZrO2 particles) in both a fluidized bed receiver and a packed bed receiver. As a rule, gases being transparent to solar radiation, the porous media act as (i) an absorber (ii) a gas-solid heat exchanger. The main thermal features of the systems have been measured using the 6.5 kW solar furnace of the “Laboratoire d'Energétique Solaire” in Odeillo, France. Theoretical approach, temperature profile, gas outlet temperature as a function of mean flux density, and thermal efficiency of the receiver have been reported. Great improvements of the thermal efficiency may be expected from the newly designed receivers.  相似文献   

10.
A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.  相似文献   

11.
An experimental investigation has been carried out on a low porosity packed bed solar air heater. This investigation covers a wide range of geometrical parameters of wire screen matrix, i.e. wire diameter 0.795 to 1.40 mm, pitch 2.50 to 3.19 mm and number of layers from 5 to 12. The correlations have been developed for the Colburn j factor and friction factor for a low range of porosities from 0.667 to 0.880 and packing Reynolds number range from 182 to 1168. It is observed that both the heat transfer coefficient and the friction factor are strong functions of geometrical parameters of the porous packed bed. A decrease in porosity increases the volumetric heat transfer coefficient.  相似文献   

12.
The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPC and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic/thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPC) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. Energy balance equations have been developed for the various nodes of the system. Both thermal and electrical performance of the collector are presented and discussed.  相似文献   

13.
In the present investigation, two types (Type A and Type B) of the double-pass packed bed solar air heater under external recycle are investigated theoretically. In Type A, the porous media is considered in the upper channel, whereas in Type B, the porous media is considered in the lower channel. Iron scraps are used as a packed bed material (porous media) to strengthen the convective heat transfer coefficient for air flowing through the packed bed. The mathematical model for these two air heaters operating under forced convection mode is presented. The results revealed that the thermal and thermo-hydraulic efficiencies of Type A are higher as compared to Type B. In order to validate the models, the theoretical results obtained from the conventional model of Type B are compared with the theoretical results obtained from the previous investigation and showed that good agreement is achieved.  相似文献   

14.
The thermal behaviour of a packed bed storage system charged with hot air is modelled using two partial differential equations representing the energy conservation in the air and solid phases constituting the bed. These two equations are coupled through the heat exchange process between the two phases. A fully implicit numerical scheme based on forward, upwind and central differencing for the time, first and second space derivatives, respectively, is used to solve the modelling equations. Marching technique is used for the air equation and a tri-diagonal matrix solver is employed to solve the solid equation. The solution yields the thermal structure of the bed, namely the air and solid temperature distribution inside the bed at any particular time, and the variation of total energy stored in the bed with time. The effect of bed length, solid diameter and void fraction on the thermal characteristics of the packed bed is studied. Further, the performance of the bed under variable inlet air temperature and mass flow rate is investigated.  相似文献   

15.
Artificial roughness has been found to enhance the heat transfer from the absorber plate to the air in a solar air heater duct. However, this improvement is invariably accompanied by increased pumping power. In this work, the effect of roughness and operating parameters on the thermal as well as the hydraulic performance of roughened solar air heaters is discussed and the thermohydraulic performance of roughened solar air heaters is compared with that of conventional smooth solar air heaters. The optimum design and operating conditions have been determined. On the basis of thermohydraulic considerations it has been found that the systems operating in a specified range of Reynolds number show better thermohydraulic performance depending upon the insolation. A relationship between the system and operating parameters that combine to yield optimum performance has been developed.  相似文献   

16.
A method for measuring the performance parameters of a solar thermal collector under non-steady conditions has been applied to an air heater with a truncated compound parabolic concentrator having an aperture area of 1.44 m2 and a flat absorber with concentration ratio three. This type of collector was chosen in order to obtain high air temperatures in a tropical climate where the proportion of diffuse solar radiation is high. The parameters found were the optical efficiency, the linear and nonlinear heat loss coefficients, and the effective heat capacity. These parameters were determined individually in separate experiments, some with and some without solar radiation falling on the collector. Agreement within 2% was found between the optical efficiency measured in the experiments and the optical efficiency determined from direct measurements of the optical properties of the materials in the collector. The method can be performed all the year round in a tropical climate when steady conditions do not occur.  相似文献   

17.
This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number Re from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number Nu have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.  相似文献   

18.
Because of intermittent nature of solar energy, storage is required for uninterrupted supply in order to match the needs. Packed beds are generally used for storage of thermal energy from solar air heaters. A packed bed is a volume of porus media obtained by packing particles of selected material into a container. A number of studies carried out on packed beds for their performance analysis were reported in the literature. These studies included the design of packed beds, materials used for storage, heat transfer enhancement, flow phenomenon and pressure drop through packed beds. This paper presents an extensive review on the research carried out on packed beds. Based on the literature review, it is concluded that most of the studies carried out are on rocks and pebbles as packing material. A very few studies were conducted on large sized packing materials. Further no study has been reported so far on medium sized storage elements in packed beds.  相似文献   

19.
《Energy》2001,26(2):161-176
This paper presents results of an experimental investigation of the performance of solar air heaters with chamfered repeated rib-roughness on the airflow side of the absorber plates. The roughened elements have a relative roughness pitch of 4.58 and 7.09 while the rib chamfer angle is fixed at 15°. For the airflow duct depths of 21.8, 21.5 and 16 mm, the relative roughness heights for the three roughened plates used are 0.0197, 0.0256 and 0.0441, respectively. The airflow rate per unit area of absorber plate has been varied between 0.024 to 0.102 kgs−1 m−2 (flow Reynolds number ranges from 3750 to 16 350). The study shows substantial enhancement in thermal efficiency (10 to 40%) over solar air heaters with smooth absorber plates due to the enhancement in the Nusselt number (50% to 120%). The thermal efficiency enhancement is also accompanied by a considerable enhancement in the pumping power requirement due to the increase in the friction factor (80% to 290%). At low flow rates, corresponding to applications requiring air at a high temperature, the solar air heater with roughness elements having a high relative roughness height, yields a better performance. However, at high flow rates the increase in the pumping power is greater than the relative gain in the energy collection for a greater relative roughness height and, hence, the net gain is higher for smaller roughness heights. At still higher flow rates, the smooth duct air heater has better effective efficiency. A mathematical model for thermal performance prediction of solar air heaters with absorber plate having integral chamfered rib-roughness has been presented. The experimental and predicted values of thermal efficiency lie within ±7% with a standard deviation of ±5.8%.  相似文献   

20.
The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34–45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号