共查询到20条相似文献,搜索用时 15 毫秒
1.
用强电流直流伸展电弧化学气相沉积金刚石薄膜装置,在CH4-Ar和CH4-H2-Ar气氛中沉积了纳米金刚石薄膜,研究了沉积气氛中H2加入量和沉积压力对金刚石薄膜显微组织和生长机制的影响.沉积气氛中H2含量对金刚石薄膜的表面形貌、晶粒尺寸和生长速度有显著影响,随着H2含量增加,金刚石晶粒尺寸增大,薄膜生长速度提高.在1%CH4-Ar气氛中沉积的纳米金刚石薄膜,晶粒尺寸细小,薄膜表面形貌光滑平整.在1%CH4-少量H2-Ar气氛中沉积的金刚石薄膜,晶粒尺寸小于100nm,薄膜表面形貌较平整.随着沉积压力提高,金刚石薄膜的生长速度增大.用激光Ram an对金刚石薄膜进行了表征. 相似文献
2.
Alexander Kromka Oleg Babchenko Bohuslav Rezek Martin Ledinsky Karel Hruska Jiri Potmesil Milan Vanecek 《Thin solid films》2009,518(1):343-347
Two technological strategies to generate patterned diamond growth have been tested. The diamond micro-structures (i.e. linear stripes and 5 µm narrow channels) were grown in the thickness of 450 nm on Si/SiO2 substrates by a microwave plasma chemical vapor deposition process. Strategy 1, employing a metal mask, resulted in unsatisfying patterned diamond growth due to instability of metal mask. Strategy 2 was based on a direct lithographic patterning of the seeding layer and resulted in a strongly selective, homogenous, and compact growth of diamond on the polymer-coated seeding patterns. This is assigned to the high seeding yield. The diamond micro-structures formed in this way exhibit surface conductivity of 10− 7 (Ω/□)− 1 as assessed by I–V characteristics. The observed results appear promising for the development of directly grown diamond-based transistors. 相似文献
3.
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma. 相似文献
4.
Hongbo B.T. Li Karine H.M. van der Werf Jatin K. Rath Ruud E.I. Schropp 《Thin solid films》2009,517(12):3476-110
In silicon thin film solar cell technology, frequently rough or textured substrates are used to scatter the light and enhance its absorption. The important issue of the influence of substrate roughness on silicon nanocrystal growth has been investigated through a series of nc-Si:H single junction p-i-n solar cells containing i-layers deposited with Hot-wire CVD. It is shown that silicon grown on the surface of an unoptimized rough substrate contains structural defects, which deteriorate solar cell performance. By introducing parameter v, voids/substrate area ratio, we could define a criterion for the morphology of light trapping substrates for thin film silicon solar cells: a preferred substrate should have a v value of less than around 1 × 10- 6, correlated to a substrate surface rms value of lower than around 50 nm. Our Ag/ZnO substrates with rms roughness less than this value typically do not contain microvalleys with opening angles smaller than ~ 110°, resulting in solar cells with improved output performance. We suggest a void-formation model based on selective etching of strained Si-Si atoms due to the collision of growing silicon film surface near the valleys of the substrate. 相似文献
5.
Diamond thin films were grown by linear antenna microwave plasma CVD process over large areas (up to 20 × 10 cm2) from a hydrogen based gas mixture. The influence of the gas composition (H2, CH4, CO2) and total gas pressure (0.1 and 2 mbar) on the film growth is presented. For CH4/H2 gas mixtures, the surface crystal size does not show dependence on the methane concentration and total pressure and remains below 50 nm as observed by SEM. Adding CO2 (up to 10%) significantly improves the growth rate. However, still no significant change of morphology is observed on films grown at 2 mbar. The crucial improvement of the diamond film purity (as detected by Raman spectroscopy) and crystal size is found for deposition at 0.1 mbar. In this case, crystals are as large as 500 nm and the growth rate increases up to 38 nm/h. 相似文献
6.
7.
Santos JA Ranjbar S Neto VF Ruch D Grácio J 《Journal of nanoscience and nanotechnology》2012,12(8):6822-6827
Although large focus has been placed into the deposition of nanocrystalline and ultra-nanocrystalline diamond films, most of this research uses microwave plasma assisted CVD systems. However, the growth conditions used in microwave systems cannot be directly used in hot-filament CVD systems. This paper, aims to enlarge the knowledge of the diamond film depositing process. H2/CH4/Ar gas mixtures have been used to deposit micro, nano and ultra-nanocrystalline diamond films by hot-filament CVD systems. Additionally, the distance between the filaments array and the substrate was varied, in order to observe its effect and consequently the effect of a lower substrate temperature in the nucleation density and deposition. All the samples were characterized for microstructure and quality, using scanning electron microscopy and Raman spectroscopy. 相似文献
8.
在热丝化学气相沉积体系中,系统研究了气压对CH4/H2/Ar气氛中纳米金刚石薄膜生长的影响.研究发现,体系气压对纳米金刚石的生长有很大的影响.在40torr的气压下,在CH4/H2/Ar气氛中的Ar气含量需高达90%才能保证纳米金刚石薄膜的生长,但降低气压至5torr时,50%的Ar气含量即可保证纳米金刚石薄膜的生长.压力对薄膜生长表面的气体浓度的影响是这个转变的主要原因.在同样的Ar含量下,在5torr下的C2活性基团的浓度高于40 torr的浓度,因而低的Ar含量会保证纳米金刚石薄膜的生长. 相似文献
9.
Abstracts are not published in this journal
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
10.
A. R. Krauss J. Im J. A. Schultz V. S. Smentkowski K. Waters C. D. Zuiker D. M. Gruen R. P. H. Chang 《Thin solid films》1995,270(1-2):130-136
Diamond and diamond-like carbon have properties which in principle make them ideally suited to a wide variety of thin-film applications. The widespread use of diamond thin films, however, has been limited for a number of reasons related largely to the lack of understanding and control of the nucleation and growth processes. Real-time, in-situ studies of the surface of the growing diamond film are experimentally difficult because these films are normally grown under a relatively high pressure of hydrogen, and conventional surface analytical methods require an ultrahigh vacuum environment. Pulsed ion beam based analytical methods with differentially pumped ion sources and particle detectors are able to characterize the uppermost atomic layer of a film during growth at ambient pressures in the range 0.7–27 Pa (4–6 orders of magnitude higher than other surface-specific analytical methods). We describe here a system which has been developed for the purpose of determining the hydrogen concentration and bonding sites on diamond surfaces as a function of sample temperature and ambient hydrogen pressure under hot-filament chemical vapor deposition (CVD) growth conditions. It is demonstrated that as the hydrogen partial pressure increases the saturation hydrogen coverage of the surface of a CVD diamond film increases, but that the saturation level depends on the atomic hydrogen concentration and substrate temperature. At the highest temperatures studied (700 °C), it was found that the surface hydrogen concentration did not exceed 1/4 monolayer. 相似文献
11.
K. Fabisiak R. Torz-Piotrowska E. Staryga M. Szybowicz K. Paprocki P. Popielarski F. Bylicki A. Wrzyszczyński 《Materials Science and Engineering: B》2012,177(15):1243-1247
The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide–ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance. 相似文献
12.
Preparation of inorganic-organic hybrid films containing particles using electrophoretic deposition method 总被引:1,自引:0,他引:1
Noriko Yamada Hiromasa Shoji Yuji Kubo Shingo Katayama 《Journal of Materials Science》2002,37(10):2071-2076
The composite films of methylsiloxane inorganic-organic hybrid and MoS2 particles have successfully been fabricated by electrophoretic deposition of MoS2 particles in a mixed solution of methyl ethyl ketone (MEK) and inorganic-organic hybrid sol. The addition of 20 vol% hybrid sol into a MEK suspension increased the amount of MoS2 deposition twice as much as that of MoS2 deposition in MEK alone. The fraction of particles deposited on a substrate in MEK-20 vol% sol was estimated to be much larger than that in MEK. The hydrolyzed methyltriethoxysilane in a hybrid sol modified MoS2 particles, resulting in lower negative zeta potential, which reduces the repulsion force among particles and makes the incorporation of particles into a deposition film easier. The surface modification also enables the incorporation of particles into a deposit by the interaction of surface modifiers. These factors enhance the incorporation of MoS2 particles in electrophoretic deposition in MEK-sol. 相似文献
13.
With reducing diamond grain size to nano-grade, the increase of grain boundaries and non-diamond phase will result in the change of the optical properties of chemical vapor deposition (CVD) diamond films. In this paper, the structure, morphology and optical properties of nanocrystalline diamond (NCD) films, deposited by hot-filament chemical vapor deposition (HFCVD) method under different carbon concentration, are investigated by SEM, Raman scattering spectroscopy, as well as optical transmission spectra and spectroscopic ellipsometry. With increasing the carbon concentration during the film deposition, the diamond grain size is reduced and thus a smooth diamond film can be obtained. According to the data on the absorption coefficient in the wavelength range from 200 to 1100 nm, the optical gap of the NCD films decreases from 4.3 eV to 3.2 eV with increasing the carbon concentration from 2.0% to 3.0%. From the fitting results on the spectroscopic ellipsometric data with a four-layer model in the photon energy range of 0.75-1.5 eV, we can find the diamond film has a lower refractive index (n) and a higher extinction coefficient (k) when the carbon concentration increases. 相似文献
14.
W. D. TENG Z. A. HUNEITI W. MACHOWSKI J. R. G. EVANS M. J. EDIRISINGHE W. BALACHANDRAN 《Journal of Materials Science Letters》1997,16(12):1017-1019
Abstracts are not published in this journal
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
15.
This study synthesized the nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films by the microwave plasma-enhanced chemical vapor deposition (MPCVD) system with Ar/CH4/N2 mixtures. A localized rectangular-type jet-electrode with high density plasma was used to enhance the formation of NCD/a-C films, and a maximum growth rate of 105.6 µm/h was achieved. The content variations of sp2 and sp3 phases via varying nitrogen gas flow rates were investigated by using Raman spectroscopy. The NCD/a-C film which synthesized with 6% nitrogen concentration and no hydrogen plasma etching treatment possessed a low turn-on electric field of 3.1 V/µm at the emission current of 0.01 µA. 相似文献
16.
Well-faceted polycrystalline diamond (PCD) films were deposited along with nanocrystalline diamond (NCD) films on the pure titanium substrate by a microwave plasma assisted chemical vapor deposition (MWPCVD) system in the environment of CH4 and H2 gases at a moderate temperature. Diamond film deposition on pure titanium and Ti alloys is always extremely hard due to the high diffusion coefficient of carbon in Ti, the big mismatch in their thermal expansion coefficients, the complex nature of the interlayer formed during diamond deposition, and the difficulty of attaining very high nucleation density. A well-faceted PCD film and a smooth NCD film were successfully deposited on pure Ti substrate by using a simple two-step deposition technique. Both films adhered well. Detailed experimental results on the preparation, characterization and successful deposition of the diamond coatings on pure Ti are discussed. Lastly, it is shown that smooth NCD film can be deposited at moderate temperature with sufficient diamond quality for mechanical and tribological applications. 相似文献
17.
Angelone M Marinelli M Milani E Tucciarone A Pillon M Pucella G Verona-Rinati G 《Radiation protection dosimetry》2006,120(1-4):345-348
Polycrystalline chemical vapour deposited (CVD) diamond film is an interesting material for neutron detection and dosimetry. However, the use of CVD diamond detectors is still limited by the low-level signal pulse produced because of the high energy required to produce an electron-hole pair in diamond (13.2 eV) and by the reduced charge collection efficiency owing to several types of traps for electrons and holes in CVD films. A new type of CVD diamond detector with high gain (HG) contacts was produced as part of the collaboration between the ENEA Fusion Division and the Faculty of Engineering of Rome 'Tor Vergata' University. In this paper the performance of the HG CVD diamond detector is presented and possible applications of CVD diamond detectors to neutron dosimetry are also discussed. 相似文献
18.
19.
CVD diamond coatings were deposited on to γ-TiAl surfaces using a microwave plasma enhanced CVD to improve wear properties and the performance of γ-TiAl. Diamond coatings were directly deposited on to γ-TiAl substrates and deposited on to TiC, Ti5Si3, Al2O3 + TiO2, and Si interlayers prepared on γ-TiAl substrates. The diamond coatings deposited directly on γ-TiAl suffered severe delamination and cracked. Those deposited on TiC and Ti5Si3 interlayers partially delaminated, whereas those deposited on Al2O3 + TiO2 and Si interlayers adhered well to the underlying surfaces. The diamond films obtained were characterized using scanning electron microscopy, Raman spectroscopy, and X-ray diffraction. Raman spectra showed that polycrystalline and nanocrystalline diamond films grew on γ-TiAl. Residual internal stresses of the diamond coatings deposited on interlayered-γ-TiAl were estimated experimentally from Raman spectra. The coatings prepared on Al2O3 + TiO2/γ-TiAl and Si/γ-TiAl showed lower residual stresses. 相似文献
20.
This paper presents a study about the chemical vapour deposition (CVD) diamond coated tool performance in machining unreinforced PEEK and composite PEEK CF30 (reinforced with 30% of carbon fibres).
The experimental procedure consisted of turning operations, during which cutting forces and surface roughness obtained in composite workpieces were measured.
The obtained results showed a best cutting performance for CVD diamond coated tool in machining PEEK composites, particularly in terms of cutting forces and power consumption, when compared with polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. This fact is very important due to the minor production costs of CVD diamond coated tools in comparison with PCD tools. 相似文献