首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In holographic imaging of particle fields, the interference among coherent wave fronts associated with particle scattering gives rise to intrinsic speckle noise, which sets a fundamental limit on the amount of information that particle holography can deliver. It has been established that the intrinsic speckle noise is especially severe in in-line holography because of superposition of virtual image waves, the direct transmitted wave, and the real image. However, at sufficiently high particle number densities, such as those typical in holographic particle image velocimetry (HPIV) applications, intrinsic speckle noise also arises in off-axis particle holography from self-interference among wave fronts that form the real image of particles. To overcome the latter problem we have constructed a mathematical model that relates the first- and second-order statistical properties of the intrinsic speckle noise to relevant holographic system parameters. Consistent with our experimental data, the model provides a direct estimate of the information capacity of particle holography. We show that the noise-limited information capacity can be expressed as the product of particle number density and the extent of the particle field along the optical axis. A large angular aperture of the hologram contributes directly to achievement of high information capacity. We also show that filtering in either digital or optical form is generally ineffective in removing the intrinsic speckle noise from the particle image as a result of the similar spectral properties of the two. These findings emphasize the importance of angular aperture in designing holographic particle imaging systems.  相似文献   

2.
Meng H  Hussain F 《Applied optics》1995,34(11):1827-1840
Prior approaches (e.g., off-axis holography) to overcoming the limitations of in-line holography for particle fields, namely, intrinsic speckle noise and depth resolution, involved an increased complexity of the optical system. The in-line recording and off-axis viewing (IROV) technique employs a single laser beam to record an in-line hologram, which is then viewed off axis during reconstruction. The signal-to-noise ratio and depth resolution of IROV are higher than conventional in-line holography by an order of magnitude and are comparable with off-axis holography. IROV is a much simpler approach than off-axis holography and is highly promising for holographic particle velocimetry. Measurements of the three dimensional flow velocity field of a vortex ring obtained by an IROV-based holographic particle velocimetry system are presented.  相似文献   

3.
Wu Y  Wu X  Wang Z  Chen L  Cen K 《Applied optics》2011,50(34):H22-H29
The field of view of digital in-line holography for flow field diagnostics is restricted to a small volume due to the finite size and the low spatial resolution of the available CCD. Expansion of the measurement cross section of digital holographic particle image velocimetry was investigated with a lens-based holography configuration. By sampling the chirp signal in the center lobe completely and undersampling the chirp signal in the second- and higher-order lobes by a magnified virtual recording plane produced by an imaging camera lens, the field of view is expanded. Simulation results show that the three-dimensional (3D) location and size of the relatively large particle can be reconstructed with good accuracy. A digital holographic particle image velocimetry system was established for coal particle flow field diagnostics. Compared with the lensless configuration, the field of view of the digital holography system was enlarged 1.9 times, up to 2.78 cm × 2.78 cm × 3 cm. The 3D location, size distribution, and the 3D vector field of coal powder were obtained. The results show that the application of digital in-line holography to measure large particle flow field is feasible.  相似文献   

4.
Pan G  Meng H 《Applied optics》2003,42(5):827-833
Digital holography appears to be a strong contender as the next-generation technology for holographic diagnostics of particle fields and holographic particle image velocimetry for flow field measurement. With the digital holographic approach, holograms are directly recorded by a digital camera and reconstructed numerically. This not only eliminates wet chemical processing and mechanical scanning, but also enables the use of complex amplitude information inaccessible by optical reconstruction, thereby allowing flexible reconstruction algorithms to achieve optimization of specific information. However, owing to the inherently low pixel resolution of solid-state imaging sensors, digital holography gives poor depth resolution for images, a problem that severely impairs the usefulness of digital holography especially in densely populated particle fields. This paper describes a technique that significantly improves particle axial-location accuracy by exploring the reconstructed complex amplitude information, compared with other numerical reconstruction schemes that merely mimic traditional optical reconstruction. This novel method allows accurate extraction of particle locations from forward-scattering particle holograms even at high particle loadings.  相似文献   

5.
We propose a microparticle localization scheme in digital holography. Most conventional digital holography methods are based on Fresnel transform and present several problems such as twin-image noise, border effects, and other effects. To avoid these difficulties, we propose an inverse-problem approach, which yields the optimal particle set that best models the observed hologram image. We resolve this global optimization problem by conventional particle detection followed by a local refinement for each particle. Results for both simulated and real digital holograms show strong improvement in the localization of the particles, particularly along the depth dimension. In our simulations, the position precision is > or =1 microm rms. Our results also show that the localization precision does not deteriorate for particles near the edge of the field of view.  相似文献   

6.
Anderson WL  Diao H 《Applied optics》1995,34(2):249-255

The goal of holographic particle velocimetry is to infer fluid velocity patterns from images reconstructed from doubly exposed holograms of fluid volumes seeded with small particles. The advantages offered by in-line holography in this context usually make it the method of choice, but seeding densities sufficient to achieve high spatial resolution in the sampling of the velocity fields cause serious degradation, through speckle, of the signal-to-noise ratio in the reconstructed images. The in-line method also leads to a great depth of field in paraxial viewing of reconstructed images, making it essentially impossible to estimate particle depth with useful accuracy. We present here an analysis showing that these limitations can be circumvented by variably scaled correlation, or wavelet transformation. The shift variables of the wavelet transform are provided automatically by the optical correlation methodology. The variable scaling of the wavelet transform derives, in this case, directly from the need to accommodate varying particle depths. To provide such scaling, we use a special optical system incorporating prescribed variability in spacings and focal length of lenses to scan through the range of particle depths.

Calculation shows, among other benefits, improvement by approximately two orders of magnitude in depth resolution. A much higher signal-to-noise ratio together with faster data extraction and processing should be attainable.

  相似文献   

7.
We have used digital in-line holography (DIH) with numerical reconstruction to image micrometer-sized latex spheres as well as ferrimagnetic beads suspended in gelatin. We have examined in detail theoretically and experimentally the conditions necessary to achieve submicrometer resolution of holographic reconstructions. We found that both transparent and opaque particles could be imaged with a resolution that was limited only by the wavelength of the light used. Simple inspection of intensity profiles through a particle allowed an estimate to be made of the particle's three position coordinates within an accuracy of a few hundred nanometers. When the derivative of a second-order polynomial fitted to the intensity profiles was taken, the X, Y, Z position coordinates of particles could be determined within +/-50 nm. More-accurate positional resolution should be possible with the help of more-advanced computer averaging techniques. Because a single hologram can give information about a large collection of distributed particles, DIH offers the prospect of a powerful new tool for three-dimensional tracking of particles.  相似文献   

8.
Holography of small particles is a newly revived topic because of its importance in holographic particle image velocimetry (HPIV). However, the property of particle images formed through holography remains largely unexplored. This fact undermines the measurement reliability of HPIV techniques and has become one of the obstacles in the full deployment of HPIV. We study the intrinsic aberrations in the holographic particle image introduced by particle light scattering and investigate how accurately holography can deliver information about the particles that are being imaged. Consistent with our experimental observations, simulations based on Mie scattering theory show that even with a perfect hologram the reconstructed particle images demonstrate complex three-dimensional morphologies and bodily shifts. These characteristics, manifested as image aberrations, result from uneven scattering amplitude and phase distributions across the finite aperture of the hologram. Such aberrations degrade the signal-to-noise ratio in the reconstructed image as well as introducing systematic errors in detected particle image positions. We examine the effect of these aberrations on HPIV measurements.  相似文献   

9.
Cao L  Pan G  de Jong J  Woodward S  Meng H 《Applied optics》2008,47(25):4501-4508
To apply digital holography to the measurement of three-dimensional dense particle fields in large facilities, we have developed a hybrid digital holographic particle-imaging system. The technique combines the advantages of off-axis (side) scattering in suppressing speckle noise and on-axis (in-line) recording in lowering the digital sensor resolution requirement. A camera lens is attached to the digital sensor to compensate for the weak object wave from side scattering over a large recording distance. A simple numerical reconstruction algorithm is developed for holograms recorded with a lens without requiring complex and impractical mathematical corrections. We analyze the effect of image sensor resolution and off-axis angle on system performance and quantify the particle positioning accuracy of the system. The holographic system is successfully applied to the study of inertial particle clustering in isotropic turbulence.  相似文献   

10.
Spuler SM  Fugal J 《Applied optics》2011,50(10):1405-1412
We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam-splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (~5 μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5 μm within a 15 cm(3) sample volume.  相似文献   

11.
Digital holography, which consists of both acquiring the hologram image in a digital camera and numerically reconstructing the information, offers new and faster ways to make the most of a hologram. We describe a new method to determine the rough size of particles in an in-line hologram. This method relies on a property that is specific to interference patterns in Fresnel holograms: Self-correlation of a hologram provides access to size information. The proposed method is both simple and fast and gives results with acceptable precision. It suppresses all the problems related to the numerical depth of focus when large depth volumes are analyzed.  相似文献   

12.
Abstract

An existing model of the speckle noise affecting images in far-field in-line holographic imaging is extended to distributions of disc-shaped particles which are no longer of uniform diameter. In this model the signal-to-noise ratio in replayed images from ideal in-line holograms in the Fraunhofer regime is limited by the speckle field arising from the overlapping Airy patterns. The original study was motivated by holographic particle image velocimetry and assumed that all the particles were of uniform diameter. We extend this model to cover polydisperse, power-law, exponential and Gaussian distribution functions and include an explicit limit on our maximum particle diameter to ensure that the hologram is recorded in the far-field of all the particles.  相似文献   

13.
记录着不同深度位置的粒子全息图在数值重构过程中由于直透光、孪生像的影响以及离焦粒子像的存在,导致了聚焦粒子再现像质量的下降.针对这一问题,本文提出一种数值处理方法来减小上述三因素对聚焦粒子再现像的影响.该方法通过对数值重构出的两个聚焦与非聚焦面上粒子复振幅相减,将直透光、孪生像和离焦粒子像对聚焦粒子的影响同时减小,因此提高和改善了聚焦粒子再现像的对比度.在同轴数字全息层析再现粒子场过程中,该方法适用于在某一聚焦面仅显示聚焦粒子.此外,该过程仅需要一张全息图,而且不需要对全息图做预前和后期处理.给出了简要理论以及仿真、实验结果.  相似文献   

14.
Singh DK  Panigrahi PK 《Applied optics》2012,51(17):3874-3887
The 3D distribution of a particle field by digital holography is obtained by 3D numerical reconstruction of a 2D hologram. The proper identification of particles from the background during numerical reconstruction influences the overall effectiveness of the technique. The selection of a suitable threshold value to segment particles from the background of reconstructed images during 3D holographic reconstruction process is a critical issue, which influences the accuracy of particle size and number density of reconstructed particles. The object particle field parameters, such as depth of sample volume and density of object particles, influence the optimal threshold value. The present study proposes a novel technique for the determination of the optimal threshold value of a reconstructed image. The effectiveness of the proposed technique is demonstrated using both simulated and experimental data. The proposed technique is robust to variation in optical properties of particle and background, depth of sample volume, and number density of object particle field. The particle diameter obtained from the proposed threshold technique is within 5% of that obtained from the particle size analyzer. There is a maximum ten times increase in reconstruction effectiveness by using the proposed automatic threshold technique in comparison with the fixed manual threshold technique.  相似文献   

15.
We demonstrate that the fractional-order Fourier transformation is a suitable method to analyze the diffraction patterns of particle field holograms. This method permits reconstruction of in-line digital holograms beyond the Fraunhofer condition (d2/lambdaz approximately/= 10). We show that the diameter of spherical particles is measured with good accuracy. Simulation and experimental results are presented.  相似文献   

16.
A method for numerical reconstruction of digitally recorded holograms with variable magnification is presented. The proposed strategy allows for smaller, equal, or larger magnification than that achieved with Fresnel transform by introducing the Bluestein substitution into the Fresnel kernel. The magnification is obtained independent of distance, wavelength, and number of pixels, which enables the method to be applied in color digital holography and metrological applications. The approach is supported by experimental and simulation results in digital holography of objects of comparable dimensions with the recording device and in the reconstruction of holograms from digital in-line holographic microscopy.  相似文献   

17.
Digital in-line holographic microscopy   总被引:7,自引:0,他引:7  
We first briefly review the state of the art of digital in-line holographic microscopy (DIHM) with numerical reconstruction and then discuss some technical issues, such as lateral and depth resolution, depth of field, twin image, four-dimensional tracking, and reconstruction algorithm. We then present a host of examples from microfluidics and biology of tracking the motion of spheres, algae, and bacteria. Finally, we introduce an underwater version of DIHM that is suitable for in situ studies in an ocean environment that show the motion of various plankton species.  相似文献   

18.
Digital holography enables a multifocus quantitative phase microscopy for the investigation of reflective surfaces and for marker-free live cell imaging. For digital holographic long-term investigations of living cells an automated (subsequent) robust and reliable numerical focus adjustment is of particular importance. Four numerical methods for the determination of the optimal focus position in the numerical reconstruction and propagation of the complex object waves of pure phase objects are characterized, compared, and adapted to the requirements of digital holographic microscopy. Results from investigations of an engineered surface and human pancreas tumor cells demonstrate the applicability of Fourier-weighting- and gradient-operator-based methods for robust and reliable automated subsequent numerical digital holographic focusing.  相似文献   

19.
Lai T  Lin W 《Applied optics》1997,36(19):4419-4424
We have obtained, based on the general irradiance distribution of in-line far-field holography, analytical solutions of the recordable depth of view (RDV) and the allowable farthest far-field distance (AFFD) of the in-line far-field holography for different illumination modes. The analytical solutions of RDV and AFFD show that AFFD cannot be limited if micro-objects are positioned in one special space and illuminated with convergent beams, but the RDV is not improved simultaneously. When micro-objects are placed in another special space and illuminated with a divergent beam, the RDV and AFFD can be improved simultaneously, but the recordable object space is split into two subspaces. These results are important in the design of a holographic recording system.  相似文献   

20.
We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号