首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DQRUMA (distributed-queueing request update multiple access) protocol has been considered as an access protocol for the BAHAMA (broadband ad hoc wireless ATM local area network). However, it cannot support the service discipline of integrated multimedia traffic since it does not include any priority and access control policy. In this paper, we propose a nonpreemptive priority-based access control scheme for the DQRUMA protocol. Under such a scheme, modifying the CSMA/CA protocol in the contention period supports many levels of priorities such that user mobility (handoff) can be supported in BAHAMA. Besides, the proposed transmit-permission policy and adaptive bandwidth allocation scheme provide various QoS (quality-of-service) guarantees while maintaining high bandwidth utilization. Simulations show that it provides a good performance in ad hoc wireless ATM LAN environments  相似文献   

2.
The growth in wireless communication technologies attracts a considerable amount of attention in mobile ad hoc networks. Since mobile hosts in an ad hoc network usually move freely, the topology of the network changes dynamically and disconnection occurs frequently. These characteristics make it likely for a mobile ad hoc network to be separated into several disconnected partitions, and the data accessibility is hence reduced. Several schemes are proposed to alleviate the reduction of data accessibility by replicating data items. However, little research effort was elaborated upon exploiting the group mobility where the group mobility refers to the phenomenon that several mobile nodes tend to move together. In this paper, we address the problem of replica allocation in a mobile ad hoc network by exploring group mobility. We first analyze the group mobility model and derive several theoretical results. In light of these results, we propose a replica allocation scheme to improve the data accessibility. Several experiments are conducted to evaluate the performance of the proposed scheme. The experimental results show that the proposed scheme is able to not only obtain higher data accessibility, but also produce lower network traffic than prior schemes.  相似文献   

3.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

4.
The swift growth of the mobile users and limited availability of bandwidth lead to the requirement of effective channel allocation process. Channel allocation becomes tedious in vehicular ad hoc network, as the mobility of the nodes is high. So, in this paper, we propose a method called as cross layer based channel reservation with preemption (CCRP) method that performs channel allocation process by estimating the handoffs in vehicular ad hoc networks. The time estimated is communicated from physical layer to medium access control layer using a cross‐layer design. The reusability concept is used, and the channels are divided into three groups. The different cells acquire different groups based on the database status and exclusively to avoid interference. Preemption is incorporated to give the highest priority to real time originating calls and real time handoff calls. The performance of the proposed method, CCRP, is compared with the legacy systems such as cooperative reservation of service channels and very fast handover scheme in terms of dropping probability, blocking probability, and handoff latency. The results show that the proposed algorithm, CCRP, performs better in comparison. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Wireless ad hoc networks consist of nodes having a self-centrically broadcasting nature of communication. To provide quality of service (QoS) for ad hoc networks, many issues are involved, including routing, medium-access control (MAC), resource reservation, mobility management, etc. Carefully designed distributed medium-access techniques must be used for channel resources, so that mechanisms are needed to efficiently recover from inevitable frame collisions. For ad hoc wireless networks with a contention-based distributed MAC layer, QoS support and guarantee become extremely challenging. In this paper, we address this challenging issue. We first consider MAC and resource-reservation aspects for QoS support in one-hop ad hoc wireless networks. We propose two local data-control schemes and an admission-control scheme for ad hoc networks with the IEEE 802.11e MAC standard. In the proposed fully distributed local data control schemes, each node maps the measured traffic-load condition into backoff parameters locally and dynamically. In the proposed distributed admission-control scheme, based on measurements, each node makes decisions on the acceptances/rejections of flows by themselves, without the presence of access points. The proposed mechanisms are evaluated via extensive simulations. Studies show that, with the proposed schemes, QoS can be guaranteed under a clear channel condition while maintaining a good utilization. Discussions on applying the proposed schemes into multihop ad hoc networks are also included.  相似文献   

6.
Cao  Guohong 《Wireless Networks》2003,9(2):131-142
Next generation high-speed cellular networks are expected to support multimedia applications, which require QoS provisions. Since frequency spectrum is the most expensive resource in wireless networks, it is a challenge to support QoS using limited frequency spectrum. In the literature, two orthogonal approaches are used to address the bandwidth utilization issue and the QoS provision issue; that is, channel allocation schemes have been proposed to improve bandwidth efficiency, whereas handoff management schemes, based on bandwidth reservation, have been proposed to guarantee a low connection dropping rate. However, little effort has been taken to address both issues together. In this paper, we integrate distributed channel allocation and adaptive handoff management to provide QoS guarantees and efficiently utilize the bandwidth. First, we present a complete distributed distributed channel allocation algorithm and propose techniques to reduce its message complexity and intra-handoff overhead. Second, we integrate the proposed distributed channel allocation algorithm with an adaptive handoff management scheme to provide QoS guarantees and efficiently utilize the bandwidth. Detailed simulation experiments are carried out to evaluate the proposed methodology. Compared to previous schemes, our scheme can significantly reduce the message complexity and intra-handoff overhead. Moreover, the proposed scheme can improve the bandwidth utilization while providing QoS guarantees.  相似文献   

7.
Handoff performance is a critical issue for mobile users in wireless cellular networks, such as GSM networks, 3G networks, and next generation networks (NGNs). When ad hoc mode is introduced to cellular networks, multi-hop handoffs become inevitable, which brings in new challenging issues to network designers, such as how to reduce the call dropping rate, how to simplify the multi-hop handoff processes, and how to take more advantage of ad hoc mode for better resource management, and most of these issues have not been well addressed as yet. In this paper, we will address some of the issues and propose a scheme, Ad-hoc-Network–Embedded handoff Assisting Scheme (ANHOA), which utilizes the self-organizing feature of ad hoc networks to facilitate handoffs in cellular networks and provide an auxiliary way for mobile users to handoff across different cells. Moreover, we also propose a scheme enabling each BS to find the feasible minimum reservation for handoff calls based on the knowledge of adjacent cells’ traffic information. Due to the use of multi-hop connections, our scheme can apparently alleviate the reservation requirement and lower the call blocking rate while retaining higher spectrum efficiency. We further provide a framework for information exchange among adjacent cells, which can dynamically balance the load among cells. Through this study, we demonstrate how we can utilize ad hoc mode in cellular systems to significantly improve the handoff performance.  相似文献   

8.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

9.
Admission control in time-slotted multihop mobile networks   总被引:4,自引:0,他引:4  
The emergence of nomadic applications have generated a lot of interest in next-generation wireless network infrastructures which provide differentiated service classes. So it is important to study how the quality of service (QoS), such as packet loss and bandwidth, should be guaranteed. To accomplish this, we develop am admission control scheme which can guarantee bandwidth for real-time applications in multihop mobile networks. In our scheme, a host need not discover and maintain any information of the network resources status on the routes to another host until a connection request is generated for the communication between the two hosts, unless the former host is offering its services as an intermediate forwarding station to maintain connectivity between two other hosts. This bandwidth guarantee feature is important for a mobile network to interconnect wired networks with QoS support. Our connection admission control scheme can also work in a stand-alone mobile ad hoc network for real-time applications. This control scheme contains end-to-end bandwidth calculation and bandwidth allocation. Under such a scheme, the source is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network and the efficient support of real time applications. In the case of ATM interconnection, the bandwidth information can be used to carry out an intelligent handoff between ATM gateways and/or to extend the ATM virtual circuit service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine via simulation the system performance in various QoS traffic flows and mobility environments  相似文献   

10.
Energy efficiency is a measure of the performance of IEEE 802.11 wireless multihop ad hoc networks. The IEEE 802.11 standard, currently used in wireless multihop ad hoc networks, wastes bandwidth capacity and energy resources because of many collisions. Therefore, controlling the contention window size at a given node will increase not only the operating life of the battery but also the overall system capacity. It is essential to develop effective backoff schemes for saving power in IEEE 802.11 wireless multihop ad hoc networks. In this paper, we propose an energy-efficient backoff scheme and evaluate its performance in an ad hoc network. Our contention window mechanism devised by us grants a node access to a channel on the basis of the node’s percentage of residual energy. We use both an analytical model and simulation experiments to evaluate the effective performance of our scheme in an ad hoc network. Our extensive ns-2-based simulation results have shown that the proposed scheme provides excellent performance in terms of energy goodput, end-to-end goodput, and packet delivery ratio, as well as the end-to-end delay.  相似文献   

11.
Topology and mobility considerations in mobile ad hoc networks   总被引:2,自引:0,他引:2  
Brent  Raouf   《Ad hoc Networks》2005,3(6):762-776
A highly dynamic topology is a distinguishing feature and challenge of a mobile ad hoc network. Links between nodes are created and broken, as the nodes move within the network. This node mobility affects not only the source and/or destination, as in a conventional wireless network, but also intermediate nodes, due to the network’s multihop nature. The resulting routes can be extremely volatile, making successful ad hoc routing dependent on efficiently reacting to these topology changes.

In order to better understand this environment, a number of characteristics have been studied concerning the links and routes that make up an ad hoc network. Several network parameters are examined, including number of nodes, network dimensions, and radio transmission range, as well as mobility parameters for maximum speed and wait times. In addition to suggesting guidelines for the evaluation of ad hoc networks, the results reveal several properties that should be considered in the design and optimization of MANET protocols.  相似文献   


12.
The shared-medium multihop nature of wireless ad hoc networks poses fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed in wireline networks are not applicable in the context of wireless ad hoc networks, due to their unique characteristics of location-dependent contention. In this paper, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. We further improve the algorithm toward asynchronous network settings and prove its convergence. Extensive simulations under a variety of network environments have been conducted to validate our theoretical claims.  相似文献   

13.
Integration of vehicular ad hoc network and fixed IP network is important to provide Internet connection and mobile data service for vehicles. However, the unique characteristics of vehicular networks, such as linear topology and constrained movements of vehicles, are not considered in the conventional mobility management schemes. Using conventional schemes, unnecessary management messages are generated and the connections to roadside-installed base stations are not fully utilized. As the results, bandwidth is wasted and data delivery ratio is not maximized. In this paper, we propose a novel mobility management scheme to integrate vehicular ad hoc network and fixed IP networks more efficiently. The proposed scheme manages mobility of vehicles based on street layout as well as the distance between vehicles and base stations. Utilizing the unique characteristics of vehicular networks, the proposed scheme has substantially less mobility management overhead and higher data delivery ratio. The proposed scheme is simulated by SUMO (a vehicular traffic simulator) and QualNet (a data network simulator). The simulation results show that the proposed scheme reduced the mobility management overhead up to 63% and improved the data delivery ratio up to 90%.  相似文献   

14.
Carrier sense multiple access (CSMA) is one of the most pervasive medium access control (MAC) schemes in ad hoc, wireless networks. However, CSMA and its current variants do not provide quality-of-service (QoS) guarantees for real-time traffic support. This paper presents and studies black-burst (BB) contention, which is a distributed MAC scheme that provides QoS real-time access to ad hoc CSMA wireless networks. With this scheme, real-time nodes contend for access to the channel with pulses of energy-so called BBs-the durations of which are a function of the delay incurred by the nodes until the channel became idle. It is shown that real-time packets are not subject to collisions and that they have access priority over data packets. When operated in an ad hoc wireless LAN, BB contention further guarantees bounded and typically very small real-time delays. The performance of the network can approach that attained under ideal time division multiplexing (TDM) via a distributed algorithm that groups real-time packet transmissions into chains. A general analysis of BB contention is given, contemplating several modes of operation. The analysis provides conditions for the scheme to be stable. Its results are complemented with simulations that evaluate the performance of an ad hoc wireless LAN with a mixed population of data and real-time nodes  相似文献   

15.
The goal of the network mobility management is to effectively reduce the complexity of handoff procedure and keep mobile devices connecting to the Internet. When users are going to leave an old subnet and enter a new subnet, the handoff procedure is executed on the mobile device, and it may break off the real‐time service, such as VoIP or mobile TV, because of the mobility of mobile devices. Because a vehicle is moving so fast, it may cause the handoff and packet loss problems. Both of the problems will lower down the throughput of the network. To overcome these problems, we propose a novel network mobility protocol for vehicular ad hoc networks. In a highway, because every car is moving in a fixed direction at a high speed, a car adopting our protocol can acquire an IP address from the vehicular ad hoc network through the vehicle‐to‐vehicle communications. The vehicle can rely on the assistance of a front vehicle to execute the prehandoff procedure, or it may acquire a new IP address through multihop relays from the car on the lanes of the same or opposite direction and thus may reduce the handoff delay and maintain the connectivity to the Internet. Simulation results have shown that the proposed scheme is able to reduce both the handoff delay and packet loss rate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In heterogeneous network environments, it is very important for users to provide seamless services while satisfying quality-of-service, regardless of the connected access network. In this paper, we apply a concept of ad hoc cooperation for the vertical handoff in the heterogeneous network. For the seamless vertical handoff of mobile nodes, a neighbor ad hoc node assists some parts of the handoff procedures requiring large latency, such as authentication and IP registration procedures. Details of the vertical handover operation using the ad hoc cooperation are presented and its performance is evaluated. Numerical results show that the proposed vertical handoff procedure decreases the service disruption time and the probability of packet loss, compared with the conventional handoff methods that do not consider the cooperation of ad hoc node.  相似文献   

17.
In heterogeneous wireless network environment, wireless local area network (WLAN) is usually deployed within the coverage of a cellular network to provide users with the convenience of seamless roaming among heterogeneous wireless access networks. Vertical handoffs between the WLAN and the cellular network maybe occur frequently. As for the vertical handoff performance, there is a critical requirement for developing algorithms for connection management and optimal resource allocation for seamless mobility. In this paper, we develop a mathematical model for vertical handoff decision problem, and propose a multi-objective optimization immune algorithm-based vertical handoff decision scheme. The proposed scheme can enable a wireless access network not only to balance the overall load among all base stations and access points but also maximize the collective battery lifetime of mobile terminals. Results based on a detailed performance evaluation study are also presented here to demonstrate the efficacy of the proposed scheme.  相似文献   

18.
Moving toward 4G, wireless ad hoc networks receive growing interest due to users' provisioning of mobility, usability of services, and seamless communications. In ad hoc networks fading environments provide the opportunity to exploit variations in channel conditions, and transmit to the user with the currently "best" channel. In this article two types of opportunistic transmission, which leverage time diversity and multi-user diversity, respectively, are studied. Considering the co-channel interference and lack of a central controller in ad hoc networks, the "cooperative and opportunistic transmission" concept is promoted. For opportunistic transmission that exploits time diversity, it is observed that the inequality in channel contention due to the hidden terminal phenomenon tends to result in energy inefficiency. Under this design philosophy, we propose a distributed cooperative rate adaptation (CRA) scheme to reduce overall system power consumption. Taking advantage of the time-varying channel among different users/receivers and being aware of the potential contention among neighboring transmissions, we propose a QoS-aware cooperative and opportunistic scheduling (COS) scheme to improve system performance while satisfying QoS requirements of individual flows. Simulation results show that by leveraging node cooperation, our proposed schemes, CRA and COS, achieve higher network throughput and provide better QoS support than existing work  相似文献   

19.
This article proposes a scheme for bandwidth allocation in wireless ad hoc networks. The quality of service (QoS) levels for each end-to-end flow are expressed using resource-utility functions, and our algorithms aim to maximize aggregated utility. The shared channel is modeled as bandwidth resources defined by maximal cliques of mutual interfering links. We propose an entirely novel resource allocation algorithm that employs auction mechanisms where flows are bidding for resources. The bids depend both on the flow's utility function and the intrinsically derived shadow prices. Then we combine it with a utility-aware on-demand shortest path routing algorithm where shadow prices are used as a natural distance metric. We also show that the problem can be formulated as a linear programming problem. Thus we can compare the performance of our scheme to the centralized optimal LP solution, registering results very close to the optimum. We isolate the performance of the price-based routing and show its advantages in hotspot scenarios, and also propose an asynchronous version that is more feasible for ad hoc environments. Experimental results of a comparison with the state-of-the-art approach based on Kelly's utility maximization framework show that our approach exhibits superior performance for networks with both increased mobility or increased allocation period.  相似文献   

20.
To efficiently support tetherless applications in ad hoc wireless mobile computing networks, a judicious ad hoc routing protocol is needed. Much research has been done on designing ad hoc routing protocols and some well-known protocols are also being implemented in practical situations. However; one major imperfection in existing protocols is that the time-varying nature of the wireless channels among the mobile-terminals is ignored; let alone exploited. This could be a severe design drawback because the varying channel quality can lead to very poor overall route quality in turn, resulting in low data throughput. Indeed, better performance could be achieved if a routing protocol dynamically changes the routes according to the channel conditions. In this paper, we first propose two channel adaptive routing protocols which work by using an adaptive channel coding and modulation scheme that allows a mobile terminal to dynamically adjust the data throughput via changing the amount of error protection incorporated. We then present a qualitative and quantitative comparison of the two classes of ad hoc routing protocols. Extensive simulation results indicate that channel adaptive ad hoc routing protocols are more efficient in that shorter delays and higher rates are achieved, at the expense of a higher overhead in route set-up and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号