首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mercury cadmium telluride (MCT) photodiode is a well-known detector for infrared (IR) sensing. Its growth (mainly liquid phase epitaxy (LPE)) and photovoltaic technology (ion implantation planar technology for instance) for second-generation IR detectors (linear and 2D monospectral arrays) now appear to be mature, well mastered, and understood, and allow optimal detection in a wide range of spectral bands. However, the next generation of IR detectors is supposed to use more sophisticated structures and technologies (such as mesa technology for dual-band detection or advanced heterostructures for high-operating-temperature detectors). Such structures are usually grown by molecular beam epitaxy (MBE) and consist of a layered stack of different thicknesses, HgCdTe (MCT) compositions, and doping levels. Moreover, pitches accessible today with advanced hybridization techniques (20 μm or less) tend to approach the diffraction limit, especially for long-wave (LWIR) and very long-wave (VLWIR) devices. Hence, the physical understanding of these third-generation pixels from an electromagnetic (EM) point of view is not straightforward as it will have to take into account diffraction effects in the pixels. This paper will focus on EM simulation of advanced MCT detectors, using finite element modeling (FEM) to solve Maxwell’s equations in a two-dimensional (2D) configuration and calculate absorption in the pixel. The corresponding collected current is then estimated by introducing a simple diffusion modeled diode and is compared to spot-scan experiments and/or experimental spectral responses to validate the method.  相似文献   

2.
Mainly driven by space applications, mercury cadmium telluride (MCT) focal-plane arrays (FPAs) have been successfully developed for very long wavelengths (λ CO > 14 μm at 55 K). For this purpose, the standard n-on-p technology based on MCT grown by liquid-phase epitaxy (LPE) and involving vacancy doping has been modified to extrinsic doping by a monovalent acceptor. Due to the planar diode geometry obtained by ion implantation, most of the carrier generation volume is located in the p-type region with a thickness of approximately 8 μm. According to our understanding, the Shockley–Read centers connected with the Hg vacancies are thus significantly reduced. This situation should lead to longer minority-carrier lifetimes and smaller generation rates under equilibrium conditions, therefore yielding lower dark current. We indeed observe a reduction by a factor of approximately 15 by using extrinsic doping. Recent dark current data obtained in the temperature range from 55 K to 85 K on 288 × 384 FPAs with λ CO(60 K) = 12 μm, either intrinsically or extrinsically doped, corroborate this finding. These data, new results on a 112 × 112 pixel demonstrator array with λ CO(55 K) = 14.4 μm, and earlier measurements are compared with Tennant’s Rule 07 established for p-on-n technology.  相似文献   

3.
Controllable p-type doping at low concentrations is desired for multilayer HgCdTe samples in a P +/π/N + structure due to the promise of suppressing Auger processes, and ultimately reduced dark current for infrared detectors operating at a given temperature. In this study, a series of arsenic implantation and annealing experiments have been conducted to study diffusion at low Hg partial pressure with the goal of achieving effective control over dopant profiles at low concentration. Arsenic dopant profiles were measured by secondary ion mass spectroscopy (SIMS), where diffusion coefficients were extracted with values ranging between 3.35 × 10−16 cm2 s−1 and 6 × 10−14 cm2 s−1. Arsenic diffusion coefficients were found to vary strongly with Hg partial pressure and HgCdTe alloy composition, corresponding to variations in Hg vacancy concentration.  相似文献   

4.
It is established that the radiative recombination of charge carriers plays a substantial role in the GaAs-based p-i-n diodes at high densities of the forward current. It is shown experimentally that the diodes operating in microwave integrated circuits intensely emit light in the IR range with wavelengths from 890 to 910 nm. The obtained results indicate the necessity of taking into account the features of recombination processes in the GaAs-based microwave p-i-n diodes.  相似文献   

5.
We demonstrated that manganese (Mn)-doped GaN nanowires (NWs) exhibit p-type characteristics using current–voltage (IV) characteristics in both heterojunction pn structures (GaN:Mn NWs/n-Si substrate) and pp structures (GaN:Mn NWs/p-Si). The heterojunction pn diodes were formed by the coupling of the Mn-doped GaN NWs with an n-Si substrate by means of an alternating current (AC) dielectrophoresis-assisted assembly deposition technique. The GaN:Mn NWs/n-Si diode showed a clear current-rectifying behavior with a forward voltage drop of 2.4 V to 2.8 V, an ideality factor of 30 to 37, and a parasitic resistance in the range of 93 kΩ to 130 kΩ. On the other hand, we observed that other heterojunction structures (GaN:Mn NWs/p-Si) showed no rectifying behaviors as seen in pp junction structures.  相似文献   

6.
Long-wavelength infrared (LWIR) HgCdTe p-on-n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on-n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm−2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.  相似文献   

7.
We present the results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd(Se)Te/Si(211) composite substrates. We examined the variation in the etch pit density (EPD) and overall crystalline quality with respect to annealing temperature, number of annealing cycles, total annealing time, pre-annealed EPD/crystal quality, buffer layer quality, and buffer layer lattice constant. Using TCA we observed an order of magnitude reduction in the dislocation density of the HgCdTe layers and a corresponding decrease in x-ray full width at half maximum, when the as-grown layer EPD was on the order of 1 × 107 cm−2. Among all the parameters studied, the one with the greatest influence on reducing EPD was the number of annealing cycles. We also noticed a saturation point where the HgCdTe/Si EPD did not decrease below ∼1 × 106 cm−2, regardless of further TCA treatment or the as-grown EPD value.  相似文献   

8.
Low-temperature (77 K) forward current-voltage characteristics of 4H-SiC p +-p-n +-n (substrate) mesa epitaxial diode structures have been measured. The characteristics are S-shaped, which is accounted for by the bistable nature of the impact ionization of frozen-out acceptor atoms of aluminum.  相似文献   

9.
Indium tin oxide (ITO) thin films doped with Au, Ni, or Pt (3.5 at.% to 10.5 at.%) were deposited on p-GaN epilayers (Mg ~4 × 1019 cm−3) using direct-current (DC) sputter codeposition. It was found that undoped ITO con- tacts to p-GaN exhibited leaky Schottky behavior, whereas the incorporation of a small amount of Au (3.5 at.% to 10.5 at.%) significantly improved their ohmic characteristics. Compared with standard Ni/ITO contacts, the Au-doped ITO contacts had a similar specific contact resistance in the low 10−2 Ω cm−2 range, but were more stable above 600°C and more transparent at blue wavelengths. These results provide support for the use of Au-doped ITO ohmic contact to p-type GaN in high-brightness blue light-emitting diodes.  相似文献   

10.
This paper reports on recent developments made at the DEFIR joint laboratory on fabrication of planar p-on-n arsenic (As)-ion-implanted HgCdTe photodiodes. Our infrared focal-plane arrays (IRFPAs) cover a wide spectral range, from the short-wave infrared (SWIR) to the very-long-wave infrared (VLWIR). Our planar p-on-n technology is a classical one based on ion implantation followed by diffusion and activation. The p-type doping is obtained by As implantation, and n-type indium (In) doping is achieved during the epilayer growth. Our p-on-n IRFPAs show state-of-the-art performance from the SWIR to VLWIR spectral range. Mid-wave infrared (MWIR) and long-wave infrared (LWIR) FPAs have been designed with a television (TV) format and 15 μm pixel pitch. Preliminary results of high-operating-temperature detectors obtained in the MWIR (λ c = 5.3 μm at 80 K) have shown highly promising electrooptical performance above 130 K. For space applications, imagers dedicated to low-flux detection have first been produced as TV/4 focal-plane arrays, with 15 μm pitch in the SWIR range (2 μm). Finally, TV/4 arrays with 30 μm pixel pitch have been manufactured for the VLWIR range. The measured dark current fits the “Rule 07,” with homogeneous imagers.  相似文献   

11.
The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on-p mercury vacancies doped technology, n-on-p extrinsic doped technology, and p-on-n arsenic on indium technology. Special focus is given to 15 μm cutoff n/p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.  相似文献   

12.
Hg1−x Cd x Te samples of x ~ 0.3 (in the midwave infrared, or MWIR, spectral band) were prepared by molecular beam epitaxy (MBE) for fabrication into 30-μm-pitch, 256 × 256, front-side-illuminated, high-density vertically-integrated photodiode (HDVIP) focal plane arrays (FPAs). These MBE Hg1−x Cd x Te samples were grown on CdZnTe(211) substrates prepared in this laboratory; they were ~10-μm thick and were doped with indium to ~5 × 1014 cm−3. Standard HDVIP process flow was employed for array fabrication. Excellent array performance data were obtained from these MWIR arrays with MBE HgCdTe material. The noise-equivalent differential flux (NEΔΦ) operability of the best array is 99.76%, comparable to the best array obtained from liquid-phase epitaxy (LPE) material prepared in this laboratory.  相似文献   

13.
n-Type 4H-SiC bulk samples with a net doping concentration of 2.5 × 1017 cm−3 were irradiated at room temperature with 1-MeV electrons. The high doping concentration plus a reverse bias of up to −13 V ensures high electric field in the depletion region. The dependence of the emission rate on the electric field in the depletion region was measured using deep-level transient spectroscopy (DLTS) and double-correlation deep-level transient spectroscopy (DDLTS). The experimental data are adequately described by the phonon-assisted tunneling model proposed by Karpus and Pere.  相似文献   

14.
Strained-layer superlattices (SLS) based on type II InAs/Ga(In)Sb materials are a rapidly maturing technology and are theoretically predicted to exceed the dark-current performance of state-of-the-art HgCdTe. A substantial effort is underway at Teledyne Imaging Sensors in the development of SLS materials for infrared focal-plane arrays. In this paper, we describe state-of-the-art materials, device research and characterization, along with testing results for long-wavelength infrared SLS devices based on double-heterostructure and p +-B-n architectures, having n-on-p and p-on-n polarities, respectively. Detector materials exhibited excellent morphological and crystalline characteristics, and electro-optical characterization demonstrated performance comparable to the state of the art.  相似文献   

15.
The best films for thermoelectric applications near room temperature are based on the compounds Bi2Te3, Sb2Te3, and Bi2Se3, which as single crystals have distinct anisotropy in their electrical conductivity σ regarding the trigonal c-axis, whereas the Seebeck coefficient S is nearly isotropic. For p- and n-type alloys, P ⊥c > P ||c, and the power factors P ⊥c of single crystals are always higher compared with polycrystalline films, where the power factor is defined as P = S 2 σ, ⊥c and ||c are the direction perpendicular and parallel to the c-axis, respectively. For the first time in sputter-deposited p-type (Bi0.15Sb0.85)2Te3 and n-type Bi2(Te0.9Se0.1)3 thin films, the anisotropy of the electrical conductivity has been measured directly as it depends on the angle φ between the electrical current and the preferential orientation of the polycrystals (texture) using a standard four-probe method. The graphs of σ(φ) show the expected behavior, which can be described by a weighted mixture of σ ⊥c and σ ||c contributions. Because (σ ⊥c/σ ||c) p  < (σ ⊥c/σ ||c) n , the n-type films have stronger anisotropy than the p-type films. For this reason, the angular weighted contributions of P ||c lead to a larger drop in the power factor of polycrystalline n-type films compared with p-type films.  相似文献   

16.
17.
In this paper an ultra-low-power CMOS symmetrical operational transconductance amplifier (OTA) for low-frequency G m -C applications in weak inversion is presented. Its common mode input range and its linear input range can be made large using DC shifting and bulk-driven differential pair configuration (without using complex approaches). The symmetrical OTA was successfully verified in a standard CMOS 0.35-μm process. The measurements show an open loop gain of 61 dB and a unit gain frequency of 195 Hz with only 800 mV of power supply voltage and just 40 nW of power consumption. The transconductance is 66 nS, which is suitable for low-frequency G m -C applications.  相似文献   

18.
Deep-level transient spectroscopy (DLTS) has been used to study p-n junctions fabricated by implantation of boron into epitaxial 4H-SiC films with n-type conductivity and the donor concentration (8–9) × 1014 cm−3. A DLTS signal anomalous in sign is observed; this signal is related to recharging of deep compensating boron-involved centers in the n-type region near the metallurgical boundary of the p-n junction.  相似文献   

19.
The effect of the composition of the carrier gas on anisotropy of p-GaN growth rates in side-wall metal-organic chemical vapor deposition was studied. p-GaN layers with a nominal thickness of ~400 nm were grown on side-walls of GaAs mesa stripes formed preliminarily by selective-area epitaxy on Si3N4. It is shown that, if hydrogen is used as the carrier gas, the p-GaN growth occurs mainly in the lateral direction, so that the p-GaN layer is either absent or is thin at the top faces of mesa stripes; in contrast, if nitrogen is used as the carrier gas, growth in the normal (0001) direction is prevalent, so that a p-GaN layer is formed at all faces of the mesa stripe. The results of our study are indicative of a significant role of hydrogen in the process of epitaxial growth of GaN and can be used in the development of technology of devices with p-n junctions based on GaN and with the use of selective-area growth.  相似文献   

20.
Results of first-principles calculations and experiments focusing on molecular beam epitaxy (MBE) growth of HgCdTe on the alternative substrates of GaAs and Si are described. The As passivation on (2 × 1) reconstructed (211) Si and its effects on the surface polarity of ZnTe or CdTe were clarified by examining the bonding configurations of As. The quality of HgCdTe grown on Si was confirmed to be similar to that grown on GaAs. Typical surface defects in HgCdTe and CdTe were classified. Good results for uniformities of full width at half maximum (FWHM) values of x-ray rocking curves, surface defects, and x values of Hg1−x Cd x Te were obtained by refining the demanding parameters and possible tradeoffs. The sticking coefficient of As4 for MBE HgCdTe was determined. The effects of Hg-assisted annealing for As activation were investigated experimentally and theoretically by examining the difference of the formation energy of AsHg and AsTe. Results of focal-plane arrays (FPAs) fabricated with HgCdTe grown on Si and on GaAs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号