首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于支持向量机的增量学习算法研究   总被引:8,自引:0,他引:8  
分析了支持向量机理论中支持向量的特性,利用支持向量与样本空间划分的等价性,提出一种新的基于支持向量机的增量学习算法.该算法考虑新增样本集的分布可能改变对已有样本的分类结果,利用支持向量的分布特性,用对样本的划分差集构造新的支持向量集和分类平面,使差集中的样本点对分类贡献尽可能最大,有效提高了分类精度.同时差集操作简单易行,有效降低了问题的计算复杂度.实验结果表明,与常规增量算法相比,该算法在不改变时间复杂度量级的前提下对分类精度有显著提高.  相似文献   

2.
在支持向量机(SVM)方法中采用模糊☆近邻方法进行样本预选取,旨在保留最优分类超平面附近的样本点,去除远处样本点,使训练样本集减小,消除冗余,从而减小所需内存.实验结果表明,该方法无论是训练速度还是分类精度都远远好于单独的SVM分类器.  相似文献   

3.
基于支持向量机的网页分类技术是数据挖掘中一个研究热点领域.支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.但支持向量机本身是一个两类问题的判别方法。不能直接应用于多类问题.总结了当前常用的几种支持向量机多类分类算法。分别从训练速度、测试速度、分类精度三方面对这些分类方法进行了讨论,并给出了进一步的研究方向.  相似文献   

4.
针对随年龄的增长人脸图像年龄组分类准确率下降的问题,提出一种有效提高准确率和分类速度的年龄组分类方法。该方法结合主成分分析(PCA)和局部保持投影(LPP)建立主动外观模型(AAM),并对人脸图像进行特征点提取;在反向组合算法的基础上添加全局几何变换,增强AAM的表征能力,对输入人脸图像进行匹配;并利用支持向量机回归算法(SVR)对人脸图像进行年龄组分类。实验结果表明,该方法的年龄组分类准确率由79%提高到84%,分类耗时明显改善,且该方法更适用于亚洲人脸图像。  相似文献   

5.
提出了基于对应分析的支持向量机分类模型。该模型通过对应分析可以同时对变量及样本进行降维和消除相关性,从而在降低SVM训练时间的基础上有效地提高了SVM的分类精度。实验结果表明该方法是可行的。  相似文献   

6.
基于支持向量机的网页分类技术是数据挖掘中一个研究热点领域.支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势,但支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.总结了当前常用的几种支持向量机多类分类算法,分别从训练速度、测试速度、分类精度三方面对这些分类方法进行了讨论,并给出了进一步的研究方向.  相似文献   

7.
基于支持向量机的变异语音分类研究   总被引:6,自引:0,他引:6  
变异语音的训练样本有限,采用传统的分类方法进行分类,效果不够理想,而支持向量机方法在有限样本情况下可以保持很好的分类推广能力.采用支持向量机方法进行变异语音分类,提取基频和TE0基频作为变异语音分类的特征,讨论了样本预处理和参数选择等问题.提出了直接截取和DTW规正两种方法来解决语音样本特征向量长度不一致的问题.基于TE0基频特征,采用指数径向基函数(ERBF)内核,对应力(G—force)影响下的变异语音进行分类,分类正确率可达到99.2%,比传统的贝叶斯分类器和HMM分类器,分类性能分别平均提高了12.6%和6.0%.实验结果表明,采用支持向量机方法进行变异语音分类是可行的.  相似文献   

8.
一种基于马氏距离的支持向量快速提取算法   总被引:6,自引:0,他引:6  
针对用支持向量机解决分类问题,提出了一种采用样本到某一类的马氏距离来提取可能为支持向量的数据的方法,同时阐明了如何解决在输入空间和特征空问中求马氏距离所遇到的问题.利用特征值、特征矢量及伪逆运算的并行计算方法,建立了一种提取支持向量的快速算法.用该方法对训练数据进行预处理后,可以加快支持向量机的训练速度.实验结果也表明了该方法的有效性.  相似文献   

9.
高光谱遥感是将目标探测技术与光谱成像技术相结合的多维地物信息获取技术,可以同时获取描述地物分布的二维空间信息与描述地物光谱特征属性的一维光谱信息。相对于多光谱遥感,高光谱图像具有更加丰富的地物光谱信息,可以详细地反映待测地物细微的光谱属性,使地物的精确分类成为可能。本文通过对SVM与RVM的理论研究与对比分析,将这两种高维数据处理算法应用于同一高光谱图像中进行分类研究。实验结果表明,SVM的总体分类精度要略高于RVM的总体分类精度。  相似文献   

10.
本文以SVM分类方法为基础,研究了SVM在网页分类方面的应用并给出了基于KKT条件的反馈机制对SVM方法进行改进的方法。通过对中等规模的Web网页测试实验表明基于KKT(karush—Kuhn—Tucker)条件的反馈学习机制的支持向量机对Web网页分类方法是有效的。  相似文献   

11.
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则.  相似文献   

12.
为实现对模型不确定的有约束非线性系统在特定时间域上输出轨迹的有效跟踪,将改进的克隆选择算法用于求解迭代学习控制中的优化问题。提出基于克隆选择算法的非线性优化迭代学习控制。在每次迭代运算后,一个克隆选择算法用于求解下次迭代运算中的最优输入,另一个克隆选择算法用于修正系统参考模型。仿真结果表明,该方法比GA-ILC具有更快的收敛速度,能够有效处理输入上的约束以及模型不确定问题,通过少数几次迭代学习就能取得满意的跟踪效果。  相似文献   

13.
对于具有重复运动性质的动态系统的学习控制问题,本文提出了一类两层迭代算法.文中针对线性系统和一类非线性系统分别给出了算法收敛性证明.仿真结果表明,适当选取学习参数可加速收敛过程.  相似文献   

14.
多源性数据SVM集成算法研究   总被引:1,自引:0,他引:1  
针对数据特征的多源性特点,提出基于分组特征支持向量机集成算法.该方法将特征分组,对不同组特征采用不同的核函数映射到高维空间后用支持向量机分类,最后采用投票的方法得出决策标记,所得到的成员分类器具有较高的差异性.与传统的集成方法相比,该方法具有较好的检测性能.  相似文献   

15.
改进的球结构SVM多分类增量学习算法   总被引:1,自引:0,他引:1  
针对球结构支持向量机(support vector machine,SVM)增量学习算法在训练时间和分类精度上的不足,提出了一种改进的球结构SVM多分类增量学习算法.该算法首先构造一个完全二叉树用于多类分类;分析新增样本的加入对原支持向量集的影响,将新增样本集中部分样本和原始训练集中的支持向量以及分布在球体一定范围内的样本合并做为新的训练集,完成分类器的重构.实现通过减少训练样本缩短训练时间和完善分类器提高分类精度的目的.通过UCI标准数据集实验,结果表明,该算法在所需训练的样本数、训练时间以及准确率3方面都优于球结构SVM增量学习算法,尤其当样本分布不平衡时,该算法有更高的分类准确率.  相似文献   

16.
针对电力系统输出的周波波形多的特点,提出一种基于小波分析和支持向量机(SVM)的时序周波波形分类方法,实现三相电压源型逆变器的故障分类.利用离散正交小波变换(DOWT)将周波序列变换成小波系数矩阵,利用奇异值分解(SVD)的方法获得系数矩阵的奇异值向量,作为周波序列的特征值.建立基于新的Huffman树来实现支持向量机策略的多类分类模型.将奇异值分解得到的特征向量应用到该分类模型,判断逆变器的故障类型.仿真结果表明,该模型的平均期望准确率比基于普通二叉树的支持向量机多类模型高3.65%,分类准确率达到99.6%.  相似文献   

17.
针对一类有限时间内重复运行的非线性非仿射离散时间系统,本文提出了一种基于遗忘因子的数据驱动最优迭代学习控制方法.首先,引入一种迭代动态线性化方法,将被控非线性系统等效化为线性输入输出增量形式;其次,分析了最优迭代学习控制方法中存在的问题,并针对由历史信息的累积效应所导致的控制输入不能及时响应的问题,设计自适应遗忘因子使算法具有更好的可控性和灵活性.所提出的控制方法是数据驱动的控制方法,设计和分析过程仅依赖于系统的输入输出数据,不包含任何显式模型信息.最后,通过仿真验证了该方法的有效性.  相似文献   

18.
结合扫描光刻系统的曝光特点,提出一种分段迭代学习控制方法.该方法继承了非因果迭代学习律充分学习的特点.为改善动态跟踪性能,在加速过程段对前一迭代周期的误差信息进行非因果学习,以保证其沿迭代轴的快速收敛性.为克服非因果迭代学习律盲目学习的缺点,在匀速曝光段不对误差信息进行非因果学习,以保证系统的曝光性能不发生恶化,并改善系统在时间轴的瞬态性能.此外,对该方法的收敛性进行了分析和证明,并结合实例,验证了方法的有效性.  相似文献   

19.
研究了一类非线性系统的梯度变分迭代自学习算法,以提高此类非线性系统的控制品质.梯度变分迭代自学习算法是针对符合某一类范式的周期性或重复性输出控制的非线性系统而设计的一种自寻优自学习算法.该算法针对一类非线性系统的数学描述模型,给出了性能指标函数,通过梯度变分的方法寻找性能指标函数梯度的负方向,并利用迭代自学习得到性能指标函数的最小值,使系统收敛于目标输出.将该算法应用于极端环境模拟装置的压力控制系统,取得了比传统控制算法更高的效率与更快的收敛速度.梯度变分迭代自学习算法是符合一类数学模型的非线性系统的一种高效控制算法.  相似文献   

20.
在具有重复运动轨迹跟踪系统中,为了抑制永磁同步直线电机系统模型的不确定性、外部扰动,提高跟踪精度,提出用前馈-反馈结构来控制PMLSM的运动过程。重复迭代学习前馈控制可以提高系统轨迹跟踪性能,而IP反馈控制对参数变化和外部扰动有很好的抑制作用,提高系统的稳定性。Matlab仿真结果验证了方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号