首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the interactive effects of shoulder pain and wrist extensor muscle soreness on surface electromyography (EMG) during computer mouse work. On day one, subjects (N = 12) performed computer work with/without acute muscle pain induced in the trapezius muscle. Subsequently, eccentric exercise was performed to induce delayed onset muscle soreness (DOMS) in wrist extensor muscles. In presence of DOMS on day two, computer work recordings with/without pain were repeated. EMG signals were recorded from the descending part of trapezius bilaterally, flexor carpi ulnaris and extensor carpi radialis brevis. Experimental muscle pain in trapezius led to a decrease in the muscular activity of the wrist extensor (P < 0.02) and decreased the relative rest time in the wrist flexor even in presence of DOMS (P < 0.01). The present result suggests that shoulder pain plays a role in the coordination of wrist flexors and extensors during computer work.  相似文献   

2.
3.
对于人体表面肌电(SEMG)信号提出一种新的研究方法,即在磁场刺激下,采用小波变换的方法,对从掌长肌、肱桡肌、尺侧腕屈肌和肱二头肌上采集的4路表面肌电信号进行分析,并提取其6级小波分解系数绝对值累加和的平均值作为信号的特征.构建特征矢量.输入神经网络分类器进行模式识别,经过训练能够成功地识别出握举、展拳、腕内旋、腕外旋、屈腕、伸腕、前臂内旋、前臂外旋8种运动模式.实验结果表明,该方法识别率高,所需数据量少.运算速度快,实时性好,为肌电等生物电信号的研究提供了一种新方法.  相似文献   

4.
Musculoskeletal symptoms among computer users are frequently found. The aim was to investigate the musculoskeletal workload during computer work using speech recognition and traditional computer input devices (keyboard/mouse). Ten experienced computer users (nine female, one male) participated. They performed three different computer tasks: (1). text entry and (2). text editing of a standard text and (3). a self-selected work task. These tasks were performed twice using speech recognition and traditional computer input devices (keyboard/mouse). Additionally, a task consisting of reading aloud of the standard text was performed. Surface EMG from the forearm (m. extensor carpi ulnaris, m. extensor carpi radialis), the shoulder (m. trapezius) and the neck extensor muscles was recorded, in addition to the voice-related muscles (m. scalenii, m. cricothyroideus). Using speech recognition during text entry and text editing reduced the static muscle activity of the forearm, neck and to some extent the shoulder muscles. Furthermore, tendencies to longer periods of muscle activity pause (relative time with EMG gaps) in the forearm and shoulder muscles were found. This was seen at the expense of a tendency to an increased static activity and a decreased relative time with EMG gaps in m. cricothyroideus. Finally, during use of speech recognition the hand was tied to the keyboard/mouse for a shorter period of time, while the eyes were viewing the screen for a longer period of time compared to the condition with traditional computer input devices. It is recommended to use speech recognition as a supplementary tool to traditional computer input devices.  相似文献   

5.
6.
The distance of the keyboard from the edge of a work surface has been associated with hand and arm pain; however, the variation in postural and muscular effects with the horizontal position have not been explicitly explored in previous studies. It was hypothesized that the wrist approaches more of a neutral posture as the keyboard distance from the edge of table increases. In a laboratory setting, 20 adults completed computer tasks using four workstation configurations: with the keyboard at the edge of the work surface (NEAR), 8 cm from the edge and 15 cm from the edge, the latter condition also with a pad that raised the work surface proximal to the keyboard (FWP). Electrogoniometers and an electromagnetic motion analysis system measured wrist and upper arm postures and surface electromyography measured muscle activity of two forearm and two shoulder muscles. Wrist ulnar deviation decreased by 50% (4 degrees ) as the keyboard position moved away from the user. Without a pad, wrist extension increased by 20% (4 degrees ) as the keyboard moved away but when the pad was added, wrist extension did not differ from that in the NEAR configuration. Median values of wrist extensor muscle activity decreased by 4% maximum voluntary contraction for the farthest position with a pad (FWP). The upper arm followed suit: flexion increased while abduction and internal rotation decreased as the keyboard was positioned further away from the edge of the table. In order to achieve neutral postures of the upper extremity, the keyboard position in the horizontal plane has an important role and needs to be considered within the context of workstation designs and interventions.  相似文献   

7.
Mogk JP  Keir PJ 《Ergonomics》2006,49(11):1121-1130
Occupational exposure is typically assessed by measuring forces and body postures to infer muscular loading. Better understanding of workplace muscle activity levels would aid in indicating which muscles may be at risk for overexertion and injury. However, electromyography collection in the workplace is often not practical. Therefore, a set of equations was developed and validated using data from two separate days to predict forearm muscle activity (involving six wrist and finger muscles) from grip force and posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). The error in predicting activation levels of each forearm muscle across the range of grip forces, using the first day data (root mean square error; RMSEmodel), ranged from 8.9% maximal voluntary electrical activation (MVE) (flexor carpi radialis) to 11% MVE (extensor digitorum communis). Grip force was the main contributor to predicting muscle activity levels, explaining over 70% of the variance in flexor activation levels and up to 60% in extensor activation levels, respectively. Inclusion of gender as a variable in the model improved estimates of flexor but not extensor activity. While posture itself explained minimal variance in activation without grip force (< 10% MVE), wrist and forearm posture were required (with grip force) to explain over 70% of the variance of all six muscles. The validation process indicated good day-to-day reliability of each equation, with similar error for flexor muscle models but slightly higher error in the extensor models when predicting activity levels for the second day of data (RMSEvalid ranging from 8.9% to 12.7% MVE). Detailed error analysis during validation revealed that inclusion of posture in the model effectively decreased error at grip forces above 25% maximum, but was detrimental at very low grip forces. This study presents a potential new tool to estimate forearm muscle loading in the workplace using grip force and posture, as a surrogate to use of a complex biomechanical model.  相似文献   

8.
Nag PK  Pal S  Nag A  Vyas H 《Applied ergonomics》2009,40(2):286-291
The effects of forearm and wrist supports on the upper extremity postures in computer keying tasks and associated EMG activity of arm and back muscles were examined (N=8). Four positions were forearms unsupported (floating) and supported, wrists supported by bead packed (WR1) and gel-filled (WR2) wrist rest. The right and left elbow extensions were 65° and 68°, respectively, in unsupported forearms. Bilateral elbow extension increased with the forearm/wrist supports and mostly, the elbow was maintained at around 90° or greater. The wrist extension decreased with forearm/wrist supports over the unsupported condition. The forearm support significantly reduced the activity of forearm extensor digitorum, i.e., right (F(1, 47)=12.19, p<0.01) and left (F(1, 47)=5.38, p<0.05) and upper trapezius muscles over the floating posture. Wrist rests, however, increased load on the upper trapezius; the activities of flexor digitorum superficialis and erector spinae were close to the resting EMG activity for both forearm and/or wrist support. The type of wrist rests was a concern and this study indicated that the gel filled wrist rest was advantageous in reducing the forearm muscle load, in comparison to the bead packed cushions.  相似文献   

9.
Shih YC 《Applied ergonomics》2005,36(3):293-299
Despite the facts that gripping tasks have been found to be highly correlated with CTS and that splints are gaining popularity as personal protective equipment, the influence of splints on grip performance has not been determined adequately. The present study intends to investigate the influence of splints without the volar parts as well as of forearm and wrist postures on grip performances including maximal volitional contraction (MVC), maximum acceptable sustained time (MAST), cumulated exertion output (CEO), and normalized exertion level (NEL). Twenty college-student volunteers, 10 males and 10 females, were recruited. The factors of interest were gender, forearm position, wrist deviation, and splint (with and without). The forearm positions were set at 30 degrees internal shoulder rotation, 0 degrees internal shoulder rotation, and 30 degrees external shoulder rotation, the angles being measured between the sagittal plane and the long axis of dominant forearm. The wrist deviations were extension 30 degrees , neutral, and flexion 30 degrees , the angles being measured between the sagittal plane and the long axis of the grip gauge. The results indicate that the gender effect is the most dominantly significant on all evaluated response variables. Males have more MVC (220 vs. 337N), longer MAST (20.2 vs. 10.5s), and greater CEO (4306 vs. 1638Ns), but less NEL (66.6 vs. 73.9%MVC). The forearm posture is shown to be significant only on MVC. In addition, the effect of wrist posture cannot shift all responses, nor can the effect of splints. In general, a splint without volar part seems to be recommended while performing infrequent and forceful gripping tasks under the consideration of prevention, but there should be more information about the application of a splint without volar part while performing a repetitively gripping task.  相似文献   

10.
The effect of wrist orthoses on forearm muscle activity   总被引:1,自引:0,他引:1  
A general hypothesis is that a wrist orthosis reduces the wrist extensor muscle load. The aim of this study was to investigate the effects of a completely stiff wrist orthosis (SO) and a commercially available wrist orthosis (CO) on flexor and extensor electromyographic (EMG)-activity in a standardised intermittent gripping task and during standardised manual work tasks. Surface EMG from two forearm flexor and two extensor muscles was recorded. The target grip forces were 5%, 20% and 40% of maximal voluntary contraction (MVC). During the grip contraction phase CO had no effect on the EMG-readings. SO resulted in higher EMG activity than when gripping with CO and with no orthosis (NO), especially when gripping with 40% MVC. During the relaxation phase neither CO nor SO had any effect on the extensors. For the flexors the SO gave higher EMG-readings than when gripping with CO and NO, especially at 40% MVC. In conclusion the wrist orthoses tested did not reduce the EMG-activity from the flexors or the extensors during gripping or manual tasks.  相似文献   

11.
《Ergonomics》2012,55(11):1121-1130
Occupational exposure is typically assessed by measuring forces and body postures to infer muscular loading. Better understanding of workplace muscle activity levels would aid in indicating which muscles may be at risk for overexertion and injury. However, electromyography collection in the workplace is often not practical. Therefore, a set of equations was developed and validated using data from two separate days to predict forearm muscle activity (involving six wrist and finger muscles) from grip force and posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). The error in predicting activation levels of each forearm muscle across the range of grip forces, using the first day data (root mean square error; RMSEmodel), ranged from 8.9% maximal voluntary electrical activation (MVE) (flexor carpi radialis) to 11% MVE (extensor digitorum communis). Grip force was the main contributor to predicting muscle activity levels, explaining over 70% of the variance in flexor activation levels and up to 60% in extensor activation levels, respectively. Inclusion of gender as a variable in the model improved estimates of flexor but not extensor activity. While posture itself explained minimal variance in activation without grip force (<10% MVE), wrist and forearm posture were required (with grip force) to explain over 70% of the variance of all six muscles. The validation process indicated good day-to-day reliability of each equation, with similar error for flexor muscle models but slightly higher error in the extensor models when predicting activity levels for the second day of data (RMSEvalid ranging from 8.9% to 12.7% MVE). Detailed error analysis during validation revealed that inclusion of posture in the model effectively decreased error at grip forces above 25% maximum, but was detrimental at very low grip forces. This study presents a potential new tool to estimate forearm muscle loading in the workplace using grip force and posture, as a surrogate to use of a complex biomechanical model.  相似文献   

12.
《Ergonomics》2012,55(7):1125-1133
We examined the differences in muscle tension and in physiological measures depending on the type of mental task. Fifteen participants performed tests for sustained attention, vigilance and maintaining posture only. We analysed electromyogram (EMG) measures of extensor digitorum (ED), flexor carpi ulnaris (FU), deltoideus (DE) and trapezius (TR), and heart rate (HR) and respiratory frequency (RF). Measures indicated higher values for mental tasks than for maintained posture only with significant differences in all measures. The following relationships were also significant: between DE and physiological measures (HR and RF), between ED and the amplitude of EMG of the other three muscles, between FU and TR and between HR and RF. The results of this study showed that the relationship between mental demands and muscle tension was mostly reflected by tension in the arm and shoulder girdle muscles and, to a lesser degree, in forearm muscles.

Practitioner Summary: We focused on physiological and muscle tension measures differentiating work according to the level of mental demands. Differences in sustained attention, vigilance and maintaining posture only proved that mental demands were mostly reflected by tension in arm and shoulder girdle muscles and, to a lesser degree, in forearm muscles.  相似文献   

13.
《Ergonomics》2012,55(9):1841-1850
Very little is known about the magnitudes and sources of errors associated with the visual estimation of postural classification displayed on TV screens. This study was conducted to address this issue. Sixty-three subjects participated in the experiments. The findings indicate that: (1) subjects found it difficult to evaluate upper extremity postures (particularly the elbow and the wrist), while the postures around the lower back were the easiest to evaluate; (2) the lower extremity positions affected the ability of the subjects to accurately classify postures around the wrist, elbow, shoulder, neck, and lower back, with the estimates being > 70% for sitting and > 60% for standing (except for the elbow); and (3) in general, flexion and extension are easier to evaluate than neutral and non-neutral postures.  相似文献   

14.
The objective of this study was to determine and document the position of peak grip strength in different shoulder, elbow, and wrist posture combinations. Fifteen (15) male subjects performed maximal exertions with their dominant hands in nine wrist postures, three elbow postures, and two shoulder postures. Analysis of the data revealed that shoulder and elbow angles had significant effect upon the grip strength. Similarly, it was seen that grip strength at elbow at 135 degrees flexion was significantly different from those with elbow at 90 and 180 degrees. Further, the results revealed that peak grip strength occurred at a combined posture of shoulder abducted 0 degrees, elbow flexed 135 degrees, and the wrist in the neutral posture. Decrements of up to 42% in grip strength could be seen as elbow and wrist angles deviated. This means that use of handtools at deviated postures of shoulder, elbow, and wrist would decrease the percent of MVC at which a worker operated. Hence, the implementation of the finding of this study might be a reduction in the risk of injury, increase in productivity, and well-being of the workers.  相似文献   

15.
《Ergonomics》2012,55(7):938-951
Awkward upper extremity postures and repetitive wrist motions have been identified by some studies as risk factors for upper extremity musculoskeletal disorders during keyboard work. However, accurate body postures and joint motions of typists typing on standardized workstations are not known. A laboratory study was conducted to continuously measure wrist and forearm postures and motions of 25 subjects while they typed for 10 – 15 min at a standard computer workstation adjusted to the subjects' anthropometry. Electrogoniometers continuously recorded wrist and forearm angles. Joint angular velocities and accelerations were calculated from the postural data. The results indicate that wrist and forearm postures during typing were sustained at non-neutral angles; mean wrist extension angle was 23.4 ± 10.9 degrees on the left and 19.9 ± 8.6 degrees on the right. Mean ulnar deviation was 14.7 ± 10.1 degrees on the left and 18.6 ± 5.8 degrees on the right. More than 73% of subjects typed with the left or right wrist in greater than 15 degrees extension and more than 20% typed with the left or right wrist in greater than 20 degrees ulnar deviation. Joint angles and motions while typing on an adjusted computer workstation were not predictable based on anthropometry or typing speed and varied widely between subjects. Wrist motions are rapid and are similar in magnitude to wrist motions of industrial workers performing jobs having a high risk for developing cumulative trauma disorders. The magnitude of the dynamic components suggests that wrist joint motions may need to be evaluated as a risk factor for musculoskeletal disorders during typing.  相似文献   

16.
Mogk JP  Keir PJ 《Ergonomics》2003,46(9):956-975
The purpose of this study was to quantify the response of the forearm musculature to combinations of wrist and forearm posture and grip force. Ten healthy individuals performed five relative handgrip efforts (5%, 50%, 70% and 100% of maximum, and 50 N) for combinations of three wrist postures (flexed, neutral and extended) and three forearm postures (pronated, neutral and supinated). 'Baseline' extensor muscle activity (associated with holding the dynamometer without exerting grip force) was greatest with the forearm pronated and the wrist extended, while flexor activity was largest in supination when the wrist was flexed. Extensor activity was generally larger than that of flexors during low to mid-range target force levels, and was always greater when the forearm was pronated. Flexor activation only exceeded the extensor activation at the 70% and 100% target force levels in some postures. A flexed wrist reduced maximum grip force by 40-50%, but EMG amplitude remained elevated. Women produced 60-65% of the grip strength of men, and required 5-10% more of both relative force and extensor activation to produce a 50 N grip. However, this appeared to be due to strength rather than gender. Forearm rotation affected grip force generation only when the wrist was flexed, with force decreasing from supination to pronation (p < 0.005). The levels of extensor activation observed, especially during baseline and low level grip exertions, suggest a possible contributing mechanism to the development of lateral forearm muscle pain in the workplace.  相似文献   

17.
《Ergonomics》2012,55(9):956-975
The purpose of this study was to quantify the response of the forearm musculature to combinations of wrist and forearm posture and grip force. Ten healthy individuals performed five relative handgrip efforts (5%, 50%, 70% and 100% of maximum, and 50 N) for combinations of three wrist postures (flexed, neutral and extended) and three forearm postures (pronated, neutral and supinated). ‘Baseline’ extensor muscle activity (associated with holding the dynamometer without exerting grip force) was greatest with the forearm pronated and the wrist extended, while flexor activity was largest in supination when the wrist was flexed. Extensor activity was generally larger than that of flexors during low to mid-range target force levels, and was always greater when the forearm was pronated. Flexor activation only exceeded the extensor activation at the 70% and 100% target force levels in some postures. A flexed wrist reduced maximum grip force by 40-50%, but EMG amplitude remained elevated. Women produced 60-65% of the grip strength of men, and required 5-10% more of both relative force and extensor activation to produce a 50 N grip. However, this appeared to be due to strength rather than gender. Forearm rotation affected grip force generation only when the wrist was flexed, with force decreasing from supination to pronation (p<0.005). The levels of extensor activation observed, especially during baseline and low level grip exertions, suggest a possible contributing mechanism to the development of lateral forearm muscle pain in the workplace.  相似文献   

18.
《Ergonomics》2012,55(9):1419-1432
The distance of the keyboard from the edge of a work surface has been associated with hand and arm pain; however, the variation in postural and muscular effects with the horizontal position have not been explicitly explored in previous studies. It was hypothesized that the wrist approaches more of a neutral posture as the keyboard distance from the edge of table increases. In a laboratory setting, 20 adults completed computer tasks using four workstation configurations: with the keyboard at the edge of the work surface (NEAR), 8 cm from the edge and 15 cm from the edge, the latter condition also with a pad that raised the work surface proximal to the keyboard (FWP). Electrogoniometers and an electromagnetic motion analysis system measured wrist and upper arm postures and surface electromyography measured muscle activity of two forearm and two shoulder muscles. Wrist ulnar deviation decreased by 50% (4°) as the keyboard position moved away from the user. Without a pad, wrist extension increased by 20% (4°) as the keyboard moved away but when the pad was added, wrist extension did not differ from that in the NEAR configuration. Median values of wrist extensor muscle activity decreased by 4% maximum voluntary contraction for the farthest position with a pad (FWP). The upper arm followed suit: flexion increased while abduction and internal rotation decreased as the keyboard was positioned further away from the edge of the table. In order to achieve neutral postures of the upper extremity, the keyboard position in the horizontal plane has an important role and needs to be considered within the context of workstation designs and interventions.  相似文献   

19.
Laparoscopic techniques allow for less-invasive treatment of common surgical problems. Laparoscopic instruments are different from standard surgical instruments and generally incorporate a pistol-grip handle configuration with rings for the fingers. This handle configuration has been reported as being uncomfortable, leading to finger compression neuropathies in some cases. As an alternative, the surgeon can choose to grasp laparoscopic instruments using a more powerful palm grip during grasping motions. This study evaluates the hypothesis that the use of the palm grip requires less muscle tension than the finger-grip when grasping with laparoscopic instruments. Nine general surgeons used an Autosuture laparoscopic grasper with a ringed pistol-grip handle held in both a finger-in-ring (F) or palm (P) hand grip position to grasp and close two spring-loaded metal plates. The same task was performed with a surgical haemostat clamp (H) for comparison. Each subject performed the grasping task in a random sequence for the three instrument configurations at two grasping forces levels (0.7 and 4.2 N), and with the instrument at three angles to the subjects' sagittal plane (0 degree, 45 degrees and 90 degrees). Surface electromyographic (EMG) signals were acquired from the flexor carpi ulnaris (FCU), flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS), extensor carpi ulnaris (ECU), extensor digitorum comunis (EDC) and the thenar compartment (TH). The peak root mean squared (RMS) EMG voltage was averaged for five repetitions at each instrument, force and angle condition. Statistical analysis was carried out by repeated measures ANOVA. The muscle EMG RMS amplitude while using the palm grip was decreased in the FDS, TH and EDC, was unchanged in the ECU and FCU, and was slightly higher in the FDP when compared with the finger grip. These differences were most prominent at 90 degrees to the sagittal plane where the subjects' wrists neared maximal flexion. It is concluded that the palm grip is more powerful than the finger grip when grasping with laparoscopic instruments, particularly at angles perpendicular to the surgeon's sagittal plane.  相似文献   

20.
《Ergonomics》2012,55(12):1591-1607
Abstract

Ten professional milkers simulated 20 different machine-milking postures related to different vertical distances between milker and cow. The loading moment with respect to the shoulder joint bilateral axes was calculated, and EMGs from four shoulder muscles were recorded. The loading moments were related to isometric strength and EMG was standardized against an isometric maximum contraction. Muscle activity was low to moderate. Load moment increased with increasing level difference between milker and cow, but the simultaneous increase in strength utilization and muscular activation was lower than expected. About 25% of maximum shoulder flexor strength was required. The study illustrates some effects of the interaction between shoulder loading moment, trunk inclination and shoulder flexion. The method used gives load both in absolute form (loading moment) and in relation to individual capacity (strength utilization and normalized EMG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号