首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
《食品与发酵工业》2016,(9):104-108
用单一酶和复合酶在不同条件下对竹笋膳食纤维进行酶解处理,测定其膨胀力(swelling capacity,SWC)、持水力(water-holding capacity,WHC)、持油力(oil-binding capacity,OBC)等主要理化性质,并观察其微观结构的变化,从而探究酶解处理对竹笋膳食纤维理化性能的影响。结果表明:在p H=5.0,酶解温度50℃,反应时间2 h,同时添加180 U/g DF纤维素酶和90 U/g DF木聚糖酶时,竹笋膳食纤维达到最佳改性效果,其中SWC为9.29 m L/g,WHC为5.57 g/g,OBC为1.53 g/g,可溶性膳食纤维含量为12.1%。扫描电镜观察到,竹笋膳食纤维原料表面平整;单一酶处理后的竹笋膳食纤维表面粗糙,有碎屑孔隙;复合酶处理后的膳食纤维表面蓬松,有大量孔隙。复合酶处理使其具有更优势的微观结构。  相似文献   

2.
采用纤维素酶、木聚糖酶、纤维素-木聚糖复合酶分别对马铃薯渣膳食纤维进行改性,研究酶法改性对膳食纤维理化性质和单糖组分的影响。单糖测定结果表明,3种酶法改性后膳食纤维中均含有葡萄糖、半乳糖、半乳糖醛酸、阿拉伯糖、木糖5种单糖,但不同酶法改性膳食纤维各单糖含量有显著差异(p<0.05)。理化性质测定结果表明,不同酶法改性后膳食纤维的持水力、结合水力、溶解度强弱次序均为复合酶改性>木聚糖酶改性>纤维素酶改性;持油力和阳离子交换力的强弱次序均为复合酶改性>纤维素酶改性>木聚糖酶改性,复合酶改性后膳食纤维理化性质明显优于其他酶法改性。复合酶改性后膳食纤维持水力、持油力、结合水力、溶解度、阳离子交换力分别为6.29 g/g、2.89 g/g、5.99 g/g、32.28%、0.60 mL/g,与原膳食纤维相比较分别提高了115.22%、16.73%、27.18%、45.27%、173.18%。马铃薯渣膳食纤维改性前后均具有糖类特征官能团,在某些波长处出现相似吸收峰,吸收峰的强度和面积发生了改变。  相似文献   

3.
雷笋膳食纤维酶法改性及其理化性能和结构变化   总被引:3,自引:0,他引:3  
以雷笋膳食纤维为研究对象,经纤维素酶和木聚糖酶改性处理,分析其理化性能和结构特征变化。持水力、持油力、膨胀力和吸附能力(亚硝酸盐和胆固醇)为膳食纤维(dietary fiber,DF)理化性能的考察指标,通过扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)和X-射线衍射(XRD)检测膳食纤维的结构变化。结果表明,酶法改性后,可溶性膳食纤维含量从(1.02±0.04) g/100 g DF增加至(6.80±0.15) g/100 g DF; DF的持水量,持油量和膨胀能力、吸附胆固醇和亚硝酸根离子能力均显著增加(P0.05)。改性DF的表面孔隙增加、比表面积增大,木质素和纤维素部分降解,结晶度降低。因此,使用纤维素酶和木聚糖酶是一种优良的雷笋DF酶法改性方法,并为新的竹笋功能性食品和食品添加剂的研发提供基础。  相似文献   

4.
连小燕  钟振声 《食品工业科技》2012,33(12):180-183,187
以玉米皮为原材料,采用酶法和化学方法相结合,制备膳食纤维。对制备得出的膳食纤维进行生物酶改性。检测其持水性能,并确定其改性的工艺条件。经过木聚糖酶处理的膳食纤维的持水力达5.70g/g,膨胀力为3.03mL/g,分别比原材料提高了65.70%和14.93%。并确定其优化的改性条件:pH为5.0,酶量为0.2mL/g,反应温度为55℃,反应时间为50min。经过纤维素酶处理的膳食纤维持水力为5.83g/g,膨胀力为2.73mL/g,分别比原材料提高了69.48%和3.70%。并确定其优化的改性条件pH为6.0,酶用量为0.1mL/g,反应温度为45℃,反应时间为2h。经过处理的膳食纤维持油能力较佳,为玉米皮深加工利用提供了新途径。  相似文献   

5.
不同方法提取浒苔膳食纤维的效果比较   总被引:2,自引:0,他引:2  
目的:以浒苔为原料,对浒苔膳食纤维提取工艺条件进行探讨;方法:选用正交实验设计,分别利用碱处理、酶碱结合处理两种方法提取浒苔膳食纤维,并对两种方法的效果进行了比较;结果:碱处理法提取膳食纤维的最佳条件为:60g/L氢氧化钠溶液,在70℃条件下处理90min,膳食纤维含量为80.21%,膨胀力和持水力分别为6.50mL/g和541%;酶碱结合法提取膳食纤维的最佳条件为:蛋白酶用量1500u/g,纤维素酶用量80u/g,在45℃,pH6下处理1.5h,膳食纤维含量为83.24%,膨胀力和持水力分别达到18.20mL/g和1230%。结论:用酶碱结合提取膳食纤维效果明显好于碱处理。  相似文献   

6.
以绿豆皮为原料,采用高温蒸煮-复合纤维素酶和木聚糖酶法提取可溶性膳食纤维,探讨不同因素对得率的影响,并探究其体外降血糖作用。结果表明,最佳条件为料液比1∶30 g/mL、蒸煮温度120℃、蒸煮45 min、木聚糖酶0.75%、纤维素酶1.5%、酶解120 min、温度50℃,得率20.12%;高温蒸煮-复合酶处理后,持水力、持油力、膨胀力分别提升了49.86%、136.96%、103.54%;葡萄糖扩散抑制能力在60 min时提升了68.92%,葡萄糖吸附力在可溶性膳食纤维浓度为0.5%时提升了112.68%,α-淀粉酶最大抑制率提升了54.41%;动力学实验表明,可溶性膳食纤维处理前后对α-淀粉酶抑制类型均为非竞争型抑制。  相似文献   

7.
试验以玉米麸皮为原料,采用平菇液体发酵法制备阿魏酰低聚糖和膳食纤维,同时测定发酵过程中淀粉酶、蛋白酶、纤维素酶和木聚糖酶的活性,并对发酵所得膳食纤维含量及持水性、膨胀力和持油力等性质进行了研究。结果表明玉米麸皮经过平菇发酵8 d后,发酵液中淀粉酶、蛋白酶、纤维素酶和木聚糖酶的酶活均达到最高,分别为978.67 mU/mL、10.15U/mL、256.50、100.76 mU/mL,发酵液中FOs含量为12.515μmol/L。不溶性膳食纤维的提取率为2.83±0.79 g/mL,其持水性、膨胀力和持油性分别为1.37±0.39 g/g、2.17±0.29 mL/g和6.29±0.42 g/g,而可溶性膳食纤维的提取率为0.21±0.01 g/mL,其持水性、膨胀力和持油性分别为4.42±0.01 g/g、1.00±0.07 mL/g和4.75±0.49 g/g。平菇发酵玉米麸皮生产阿魏酰低聚糖和膳食纤维是可行的。  相似文献   

8.
利用网纹瓜果皮为原料制备膳食纤维,研究不同粒度(40目~120目)的膳食纤维的持水力、持油力、膨胀力、平均粒径、休止角、胆固醇吸附能力、阳离子交换能力、淀粉酶活力抑制率等性质,并通过扫描电镜、红外光谱分析其结构。结果表明:在40目~120目范围内,80目膳食纤维的持水力、持油力、膨胀力和胆固醇吸附能力最高,分别为8.56 g/g、2.77 g/g、9.93 mL/g和18.64 mg/g。平均粒径越小,膳食纤维的明度越大。休止角范围为37.22°~44.76°,80目以下的膳食纤维流动性较好。阳离子交换能力和淀粉酶活力抑制率均随着粒径的降低而增加,最大值分别达0.53 mmol/L和19.96%。扫描电镜结果显示,80目的膳食纤维具有较多的孔隙和比表面积,有利于提高其持水力和吸附能力。傅里叶变换红外光谱分析表明网纹瓜膳食纤维具备多糖化合物的典型红外光谱结构。  相似文献   

9.
海带膳食纤维的提纯及其功能活化   总被引:1,自引:0,他引:1  
本文对海带膳食纤维的提纯、脱腥和功能活化条件进行了研究.首先采用纤维素酶(添加量为为100U/g)和蛋白酶(添加量为2000U/g)酶解1 h提纯海带的膳食纤维,然后在30℃下酵母发酵0.5h或2%花茶煮沸30min处理脱腥处理,最后用0.5%NaCl对膳食纤维中的钙进行置换20min.提纯活化后的海带膳食纤维的干基含量达到为70%以上,钙含量为6%左右,膨胀力大于160mL/g,持水力大于3000%.  相似文献   

10.
以香椿叶为试材,采用单因素实验和响应面分析法对复合酶(纤维素酶∶淀粉酶=1∶1)提取香椿叶总膳食纤维(TDF)的工艺参数进行了优化。结果表明:在复合酶添加量0.5%,酶解时间2.0h,酶解温度61℃,酶解pH6.1时,香椿叶TDF提取率最高可达74.01%;所得TDF杂质含量低,生理活性好;持水力和膨胀力分别为6.50g/g和4.50mL/g。  相似文献   

11.
研究了纤维素酶和木聚糖酶单独处理及结合处理对酶法去淀粉和蛋白质后的玉米皮膳食纤维(DF1)的组成、溶胀性、持水力和持油能力的影响,并确定了适宜的酶解条件。  相似文献   

12.
酶法提取胡萝卜皮渣可溶性膳食纤维的工艺研究   总被引:1,自引:0,他引:1  
以胡萝卜皮渣为原料,采用酶法提取可溶性膳食纤维,探讨加酶量、酶解时间、酶解温度及pH对膳食纤维得率的影响。通过正交试验确定制备胡萝卜皮渣膳食纤维的最佳工艺条件为:纤维素酶添加量为1.2%,酶解温度60℃,酶解pH 4,酶解时间80 min,此条件下胡萝卜皮渣可溶性膳食纤维得率达5.32%,持水力和膨胀力分别为5.25 g/g和5.30 mL/g。  相似文献   

13.
本文采用碱法从高粱乌米中提取可溶性膳食纤维(soluble dietary fiber,SDF),在单因素实验的基础上,使用响应面法优化提取SDF并对其理化性质及抗氧化活性进行研究。优化后的最佳提取条件为料液比1:21.40 g/mL,碱液浓度2.11%,碱解时间90.71 min,提取温度59.30 ℃,SDF最大得率为20.21%。同时,SDF的持水能力、持油能力和溶胀能力分别为3.48±0.05 g/g、1.50±0.07 g/g和13.22±0.03 mL/g。此外,实验结果还表明SDF具有较高的抗氧化活性,对自由基的清除率与SDF浓度呈正相关。在SDF浓度为3.5 mg/mL时,对羟基自由基(·OH)、DPPH自由基和超氧阴离子(O2-·)的清除率分别为62.02%、56.98%和61.03%。结果表明高粱乌米是一种潜在的天然膳食纤维来源和潜在的功能性食品成分。  相似文献   

14.
以广佛手为原料,探究热水提取法(H)、高温蒸煮辅助热水浸提法(HTH)、超微粉碎辅助热水浸提法(UMH)、复合酶解法(E)、高温蒸煮辅助复合酶解法(HTE)和超微粉碎辅助复合酶解法(UME)六种方法对其膳食纤维性质的影响。结果表明:H-TDF的纯度(82.49 g/100 g)最高;E-TDF(59.15%)、UMH-IDF(48.45%)和HTE-SDF(23.68%)得率最高;结构方面,六种IDF和SDF均具有多糖特征结构,均为典型纤维素I型结构,均具有相似的表面结构;除H-SDF外,其余SDF的大分子量组分降解。理化性质方面,HTE-IDF的持水力(8.37 g/g)、持油力(2.11 g/g)、阳离子交换能力(0.24 mol/g)最高,而E-IDF的膨胀力(9.89 mL/g)最高;E-SDF的持水力(9.69 g/g)、膨胀力(7.42 mL/g)最高,UME-SDF的持油力(13.76 g/g)最高,E-SDF的阳离子交换能力(0.31 mol/g)最高。对于亚硝酸盐吸附能力,pH值2时UMH-IDF(7.28 mg/g)和H-SDF(3.80 mg/g)最高,pH值7时HTH-IDF(12.87 mg/g)和UME-SDF(1.55 mg/g)最高。综合分析,高温蒸煮辅助复合酶解法总体优于其他方法,且SDF得率最高,可推广应用。  相似文献   

15.
以高粱乌米和杏鲍菇两种食用菌为原料,通过酶—重量法制备可溶性膳食纤维(S-SDF、P-SDF)和不溶性膳食纤维(S-IDF、P-IDF),分别测定溶胀力、持水力、持油力等理化性质及葡萄糖吸附力、胆酸钠吸附力、胆固醇吸附力、葡萄糖透析延迟能力等功能性质。结果表明:S-SDF的溶胀力最强,为11.83 mL/g;P-IDF的持水力最强,为4.55 g/g;P-SDF的持油性最强,为3.01 g/g;S-IDF的葡萄糖吸附能力最强,达74.17 mg/g,S-SDF与S-IDF葡萄糖吸附能力显著强于P-SDF与P-IDF;模拟肠道环境中的胆固醇吸附能力强于胃环境,P-IDF在两种环境中的胆固醇吸附能力均最强;S-IDF胆酸钠吸附能力最强,可达83.80 mg/g;S-SDF葡萄糖透析延迟指数显著高于P-SDF,在60 min时达38.28%。  相似文献   

16.
本文采用酶法对金柚中总膳食纤维、水溶性膳食纤维、水不溶性膳食纤维分别进行提取,并对其结构、理化性质以及肠道功能进行评价。结果表明:金柚柚皮中总膳食纤维含量为65.72%,其中可溶性、水不溶性膳食纤维的得率分别为15.13%%和43.21%;总膳食纤维结构为多孔珊瑚状,水溶性膳食纤维表面有多处孔洞,水不溶性膳食纤维结构较平整;三者均含有丰富的葡萄糖、阿拉伯糖、木糖;水不溶性膳食纤维的持水力和膨胀力较好,分别为6.68 g/g和27.61 g/g;在2.5 mg/mL和10 mg/mL的体系中,水溶性膳食纤维抑制葡萄糖扩散效果更好,为0.11mg/(mL·h);水不溶性膳食纤维对α-淀粉酶抑制效果最好,此时α-淀粉酶活性为93.90%;水溶性纤维破坏胆固醇能力最强,分别为7.20%和9.40%。同时,水溶性膳食纤维具有更优越的DPPH·清除能力和铁离子还原能力。通过酶解法制得的柚皮膳食纤维有较好的理化性质,可以作为优良的食品添加剂在食品中应用。  相似文献   

17.
陶永霞  周建中  武运  于小会 《食品科学》2009,30(20):118-121
以枣渣为原料,采用酶法水解淀粉,碱法水解蛋白质、脂肪的提取方法提取枣渣可溶性膳食纤维,探讨加酶量、酶解时间、碱解pH值、碱解时间、碱解温度等因素对膳食纤维得率的影响。通过正交试验确定了酶碱法制备枣渣可溶性膳食纤维的最佳工艺条件为:糖化酶加酶量为0.4%,纤维素酶加酶量为0.5%、酶解时间60min、碱解pH值为12、碱解温度70℃、碱解时间90min,在此条件下枣渣可溶性膳食纤维得率达11.32%,持水力和溶胀性分别达到848.68%和9.26ml/g。  相似文献   

18.
以小麦麸皮为试验原料,研究了蒸汽爆破(SE)制备可溶性膳食纤维(SDF)工艺参数(蒸汽爆破压力和保压时间),并探讨了改性前后SDF的功能特性。结果表明:最佳工艺参数为压力为0.6 MPa,保压时间为9 min,SDF提取率达到31.56%。对照-SDF和SE-SDF的溶解性分别为85.47%和95.68%,持水力分别为2.35和3.57 g/g,持油力分别为1.25和2.06 g/g,膨胀力分别为3.24和5.69 mL/g,乳化活性分别为45.78和79.67 mL/100 mL,乳化稳定性分别为40.17和61.02m L/100 mL,最小凝胶浓度分别为13.57%和8.65%;总酚含量分别为1.57和3.26 mg GAE/g,ABTS、·OH、O2^-·和DPPH的清除率分别为59.34%和70.21%,30.25%和40.12%,45.18%和50.21%,80.42%和88.36%。研究结果可为小麦麸皮膳食纤维的功能改性及综合利用提供理论依据。  相似文献   

19.
为研究发芽对绿豆皮膳食纤维结构及功能性质的影响,采用X射线衍射分析、红外光谱分析和电子显微镜扫描等方法测定其结构,并对其持水力、持油力、膨胀力、阳离子交换能力、吸附葡萄糖能力、吸附胆固醇能力和吸附NO2 - 能力等功能性质进行对比研究。结果表明:发芽处理后绿豆皮中总膳食纤维含量增加3.40%,可溶性膳食纤维增加13.62%。发芽绿豆皮膳食纤维的持水力、持油力、膨胀力明显提高,分别达到(6.97±0.32)、(4.93±0.10) g/g、(4.79±0.11) mL/g,阳离子交换能力略有降低,为(0.47±0.02) mmol/g,吸附葡萄糖能力增加,为(8.37±0.18) mmol/g,吸附胆固醇能力增加,为(2.23±0.11) mg/(mL·g),吸附NO2 - 能力有所降低,为(3.92±0.09) mg/g。扫描电子显微镜结果表明,发芽可使绿豆皮膳食纤维表面出现更多孔隙和褶皱,有利于膳食纤维吸附能力的提高;X射线衍射结果表明,发芽没有改变绿豆皮膳食纤维的结晶度,较好地保留了膳食纤维的结晶区和非结晶区;傅里叶红外光谱分析表明,发芽没有破坏绿豆皮膳食纤维的官能团结构。绿豆经发芽处理后改善了绿豆皮膳食纤维的大部分功能性质,较好地保留了其结构,有利于绿豆副产物的开发利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号