共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
针对传统的基于积分通道特征(ICF)和Adaboost交通标志检测算法,召回率过低和误检率过高的问题,提出了一种两阶段交通标志检测方法.第一阶段对ICF进行谱聚类并结合Adaboost算法学习得到目标感兴趣区域(ROI);第二阶段对所获得的感兴趣区域进行直方图均衡化,利用尺度不变特征变换(SIFT)描述子与支持向量机(SVM)分类器相结合,提高了目标区域检测的准确性.通过德国交通标志数据集(GTSDB)的验证,结果表明:采用SICF-Adaboost +SIFT-SVM构建的交通标志级联分类器检测算法相对于传统的ICF-Adaboost算法召回率高且误检率低,适用于真实场景下的交通标志检测. 相似文献
3.
4.
5.
针对我国自动驾驶的辅助识别交通标志误差率大、检测速度慢、需人工参与等问题,提出一种基于改进YOLOv3的交通标志检测识别方法。通过改进Darknet53网络结构来减少网络迭代过程中前向推理计算,提升网络迭代速度。引入目标检测的直接评价指标GIoU指导定位任务来提高检测精度。使用[k]-means++聚类算法获取anchor尺寸并匹配到对应的特征层。实验结果表明,提出的方法相较于原始YOLOv3在标准数据集Lisa上的平均精度提升了8%,检测速度达到了76.9 f/s;在自制数据集CQ-data上平均精度可达94.8%,与传统识别以及其他算法相比,不仅具有更好的实时性、准确性,对各种环境变化具有更好的鲁棒性,而且可以识别多种交通标志的类型。 相似文献
6.
针对传统的基于轮廓曲线的角点检测算法需要计算曲率和选取阈值的不足,提出一种对Freeman链码分析的角点检测算法,首先通过图像边缘检测,轮廓提取得到轮廓的Freeman链码,当链码发生变化时分析其连续前后多个点的链码是否符合一定的规则来判定角点,无需经过传统的角点阈值选取,曲率计算等步骤.实验通过与He&Yung、CPDA、Fast-CPDA和ARCSS角点检测器比较,结果表明本文算法在角点检测时准确率(ACU)最高;在变换实验中,本算法的平均重复率(AR)最高,由此可以得出本算法具有良好的角点检测性能. 相似文献
7.
为了给链码的进一步研究与应用提供建设性意见和参考,文中从两个方面介绍了无损链码技术,一是基于像素的链码技术,主要介绍弗尔曼(Freeman)链码技术;二是基于边界的链码技术,主要介绍顶点链码技术.介绍了6种典型的Freeman链码和6种典型的顶点链码,对各链码的产生、主要思想及特性进行了详细的论述,给出了各链码的综合比较与评价,为链码的应用者与研究者提供便利. 相似文献
8.
基于多线索混合的交通标志检测与跟踪 总被引:2,自引:0,他引:2
提出一种基于多特征融合的交通标志检测、识别和跟踪算法.在检测阶段,先利用颜色信息提取出感兴趣的区域:然后利用角点、几何特征等信息检测出交通标志.在识别阶段,首先根据颜色和形状的对应关系进行粗分类;然后针对每一类标志建立一个二叉树结构的支持向量机多分类器用于识别其具体含义.为了减少误识别率,在跟踪阶段采用Lucas-Kanade的特征点跟踪算法跟踪交通标志.实验结果表明,该方法具有很好的鲁棒性. 相似文献
9.
10.
为了提高交通标志图像识别的准确性和实时性,提出一种基于图像聚类的交通标志CNN快速识别算法。利用图像聚类算法对原始数据集进行样本优化;采用多种图像预处理操作使样本整体质量进一步提升;构造了深度为9的CNN结构,通过多次训练得到最终的网络模型,将待识别的图像输入到CNN模型来实现自动识别。在德国交通标志数据集(German traffic sign recognition benchmark, GTSRB)和比利时交通标志数据集(Belgium traffic sign dataset, BTSD)上证明了算法的有效性,单张图片的识别速度只需0.2 s,识别精度高达98.5%以上。本算法具有识别速度快、准确率高的特点,可为智能驾驶的可靠性和安全性提供理论依据和技术支持。 相似文献
11.
针对自动驾驶场景下,提高交通标志检测速度和准确率的问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的交通标志检测算法,与传统的图像检测算法相比拥有明显的优势。首先解析影响交通标志检测准确性的因素,并对算法提出了两项改进:使用101层的残差网络作为特征提取的基础网络以获得高精度的特征提取和物体检测,同时优化网络的区域候选框特征提取方式以提高交通标志图像的检测效果。在GTSDB德国交通标志检测基准数据集上的实验结果表明,该算法实现在复杂背景下交通标志的精准检测。 相似文献
12.
基于流量特征的异常检测技术主要是通过网络流量特征属性分布规律映射网络异常行为。为提高检测准确率,降低误报率,文章提出了基于流量特征直方图聚类的异常检测和分类的技术。通过直方图的方法详细描述网段流量特征的时空信息,然后聚类分析各种属性特征的正常模型,最后根据待测流量特征属性与正常模型之间的距离所组成的向量来衡量异常。基于DARPA99数据集的实验表明,该算法具有较高的异常检测和分类准确性。 相似文献
13.
14.
15.
通过分析常见异常流量的内在特征,在Chameleon算法的基础上,设计了一种基于聚类的异常流量检测算法。通过对DARPA1998数据集的实验结果表明,该算法能够在没有先验知识的前提下,对影响正常网络性能的异常流量有较高的检测准确率。 相似文献
16.
基于交通标志都具有一定的颜色和形状,以红色倒三角形交通标志为例,介绍一种新的智能检测方法。该方法主要由以下4个环节构成。首先是颜色提取,将图像转换到HSI颜色模型的色调子空间,提取特定颜色——红色;其次是边缘检测,使用标准LOG模板在提取出来的红色区域上进行;这样,计算量将大为减少;然后是顶点判别,对边缘上的这些点,采用神经网络分类器进行分类,并分别对三角形的3种不同顶点作标记;最后是三角形的定位,通过一定的匹配准则提取出三角形。对不同场景下的20幅图像进行测试,检测正确率达到了100%。实验结果表明,该方法具有鲁棒性好、速度快、检测准确率高等特点。 相似文献
17.
交通标志检测与识别是无人驾驶三大模块中环境感知的研究热点之一,检测和识别交通标志可以向无人车传递道路交通信息,优化行车决策.在暴雨、大雾以及光线昏暗等复杂环境下,拍摄到的图像往往会被遮挡,变得模糊.这不仅影响图像的质量,还会对后期标志的检测与识别带来巨大的困难.简述了交通标志检测与识别方法,对近年来国内外学者解决各类复... 相似文献
18.
随着交通智能化和智能车技术的发展,智能车对道路目标的识别成为智能车辆研究的一个重点问题。文中首先对道路图像进行了二值化处理、空间域平滑处理和边缘检测,使道路中如道路边沿、道路标线、导向标志的大致区域得到了初步认定,然后分析了道路导向标志的影像、形状等特征,利用数学形态学方法进行了初步识别,最后研究了基于链码特性的道路导向标志目标检测算法,实现了导向标志目标的初步识别和检测。 相似文献